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1. Consider the following system with a sampling period of 0.1 second.

r T\ ° e* 2 Z c
-+ T — ZOH -
1
s+ 2
Determine the transfer function C(z)/R(z). Simplify the result as much as possible. (25pts)
2. Consider a negative feedback discrete-time control system, where the loop gain is given by
z+0.5

G(z)H(z) =K .

CHE) =K 505, v 08
Determine the range of stability in terms of the gain K. (25pts)

3. Consider the following system with a sampling period of 1 second.

r -~ 2401
= Diz) (z+08)(z - 1)
Design the simplest controller D(z) that satisfies the following requirements. (25pts)

e The 5% settling-time is less than or equal to 3 seconds.
e The maximum percent-overshoot is between 15% and 25% for the unit-step input.

e The steady-state error is zero for a step input.

4. Consider the following feedback control system, where

G(z) = 4950.5(z + 1)(10001z + 9999)2
#) = 1123 —12.782222 — 7.0396% + 8.8218

Determine the gain and phase margins of the closed-loop system. Design the simplest controller D(z),
such that gain margin of the system is increased by 100dB. Assume the sampling period T = 2s. (25pts)

HINT:
W [G}(w) _ [G(z)] _ 4950.5(z + 1)(10001z + 9999)2 _5000(w + 10000)>
- Se=irTimw | 1123 - 12.782222 — 7.03962 + 8.8218 p=itw w(w+0.01)(w+10)°
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1. Consider the following system with a sampling period of 0.1 second.

ZOH
z-1

s+ 2

Determine the transfer function C(z)/R(z). Simplify the result as much as possible.

Solution: In order to be able to take the z-transforms of signals, they need to be sampled or pseudo-
sampled. Denoting the transfer function of the zero-order hold (ZOH) by G20y, we have

£0s) = R6) (375 6 = A6 = (725) (2) Goonto) (529 B0

where E™(z) represents the ideally-sampled E(s). When we take the z-transforms of the inverse
Laplace transforms in the above equation, we get

B = R6) -2 | | () Gont0)] |2 (25 B0

To simplifv the notation, we let

Ceoni6(e) = 2 | £ (5555 ) Gon®)] | @
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(2T — 1+ e )z + (1 - (1 + 2T)e~T)
2(z—e2T)(z - 1) ’
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2T -1+ e M)z 4 (1 - (1+2T)e" )

( z
E(z) = R(2) - ( e ) (o= 1) ) (z — 1) E(z),

2(z—-e—2T)(z—-1) z—1

Then,

or
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and for 7 = 0.1s, we get

( 23 — 2.809422 + 2.6462z — 0.8187

(2 — 0.8187)(z — 1)2 ) E(z) = R(z),

or

~ \ 23 — 2.809422 + 2.6462z — 0.8187) R(z).

The z-transform of the inverse Laplace transform on the pseudo-sampled output gives

o=z |2t [ () ot | 2 (527 50
-(5) 2= [(3) o () 7

Tz 0.2z
2(2 _ 1)2E(Z) = -(;—__1)2E(Z)

B(z) = < (z — 0.8187)(z — 1)?

Substituting the expression for £(z) in the previous equation, we get

02z (z — 0.8187)(z — 1)2
Clz) = ((z - 1)2) (23 —2.809427 + 2.6462z — 0.8187) R(z),

or

C(z) _ 0.2z(z — 0.8187)

R(z) 23 —2.809422 + 2.6462z — 0.8187

2. Consider a negative feedback discrete-time control system, where the loop gain is given by

2+0.5
23 — 22 -0.252 4+ 0.25

G(2)H(z) = K

Determine the range of stability in terms of the gain K.

Solution: For G(z)H(z) = K((2 +0.5)/(2% — 22 — 0.25z + 0.25)), the characteristic equation is

z2+0.5

Y R oo 005 =

0,

or
23— 22 —0.252 +0.25 + K(z +0.5)

23 — 22 - 0.252 + 0.25
Therefore the characteristic polynomial is

=0.

q(z) = 2° = 22 + (K = 0.25)z + (0.5K + 0.25).

To determine the range of stability for all K, we can use Jury’s stability test criteria. In our case,
the order of the system n = 3. The two boundary conditions are

q(1) > 0,

(1)® — (1) + (K — 0.25)(1) + (0.5K + 0.25) > 0,
K >0, (2.1)
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and
(=1)"q(-1) > 0.

(=1*((=1)® = (1) + (K - 0.25)(—1) + (0.5K +0.25)) > 0,
K> -3. (2.2)

The pole-product condition is
lao| < an,

0.5K +0.25| < 1.
~1<0.5K +0.25 < 1,
-1.25 < 0.5K < 0.75,

25 < K < 15. ' (2.3)

The rest of the conditions is to be obtained from the Jury's table.

20 2! 22 23
ag = 0.5K + 0.25 a; = K —0.25 az = -1 az =1
az3 =1 az = -1 a; = K -0.25 ag = 0.5K +0.25
I
ay =det| ' @3 ] a] =det| %0 92 ay =det| %0 %1
Poay ag | a3y ay a3 az
= 05K +0.25 K -0.25
1 = det 1 -1

det 05K - 0.25 1
€ : 0.5K +0.25 |
aé = -1.5K

a} = 0.25(K - 1.5)(K + 2.5)

Since we have a third-order system, the table will only give one more additional condition.
!aél > ‘a}L—ll‘
10.25(K — 1.5)(K +2.5)| > | — L.5K]|,
(K — 1.5)(K +2.5)| > 6|K]|.
From the Inequality 2.1, we know that K > 0, therefore we have

(K - 1.5)(K +2.5)] > 6K > 0.

(K —1.5)(K + 2.5) > 6K > 0 Case:
In thix case,
K2+ K —3.75> 6K >0,

K? 5K —-3.75 > 0,
(K + 0.662278)(K — 5.662278) > 0,
K < —0.662278, or K > 5.662278. (2.4)

However in this case. the intersection of the regions described by Inequalities 2.1-2.3 and 2.4 is
empty.
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—(K - 1.5)(K + 2.5) > 6K > 0 Case:
In this case,

~K?2— K +3.75> 6K > 0,
K*4+ 7K -3.75<0,
(K +17.5)(K —0.5) <0,
-75< K <0.5. (2.5)

From the intersection of the regions described by Inequalities 2.1-2.3 and 2.5, we conclude that
the svstem will be asymptotically stable, when

0< K <05

3. Consider the following system with a sampling period of 1 second.

) z+0.1
‘@*ﬂg_m__ SALLI LAY -

Design the siniplest controller D(z) that satisfies the following requirements.

o The 5% settling-time is less than or equal to 3 seconds.

e The maximum percent-overshoot is between 15% and 25% for the unit-step input.

e The steady-state error is zero for a step input.

Solution: We determine the restrictions on the location of the desired-pole locations from the perfor-
mance spccifications.




EE 331

Exam#1 Solutions

Spring 2006 5/9

Given Requirements

General System Restrictions

Specific System Restrictions

Maximum percent-overshoot
for the unit-step input

15% < M, < 25%.

From the a-M,, curves,
¢=0.5

provides the broadest range of o
values.

Settling time for the unit-step
input

p< (0.05)1/(,:5%9—1).

For tsos = ksu, T < 3's, and
ksns <3/1 =3, when T = 15;

p < (0.05)1/6-1 < 0.2236.

The stcady-state error is is
zero for a step input.

Open-loop gain has a pole at 1.

Open-loop gain
= D(z2)

z+0.1
(z+0.8)(z—-1)

has to have a pole at 1. Since the
open-loop gain already has a pole
at 1, as long as D(z) doesn’t
cancel it, this requirement is
satisfied.

When wc mark these restrictions on the z-plane, we determine that a possible set of desired-pole

locations is at =4 ~ —0.19 % j0.1.
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The deficiency angle, ¢, needed at the desired location to ensure that one of the root-locus branches
goes through the location, can be determined from the angular condition.
0+ L(24 = (=0.1)) — £(zg — (—0.8)) — £(24 — (1)) = (2k + 1),

for an integer k. For zg = —0.19 + 50.1,

~1(__(0.1) = (0) - (0.1) -(0) -1 _01)=(0) \ _ 1000, panne
oo (= com) o (o= ) o () = 1o

¢+ 131.99° — 9.31° — 175.20° = 180° + k360°,
or ¢ = —127.48°.

In order to preserve the system order so that transient specifications stay accurate, we need to
cancel a pole or zero and place another one in such a way that the pole-zero combination provides
the necessary deficiency angle at z45. The best choice for cancellation is the pole at —0.8, since it
is the slowest, and since canceling the other pole at 1 prevents the satisfaction of the steady-state
requirement.

| YR
—+ j1
tan”((_o‘lg)'("o's)) = 80.69° ° ° = 46.79°
@~ 00 . 127.48° — 80.69° = 46.79
24 = —0.19 + jO.1
_ o= JO.1
- 0 - . o
> . = —¥ -
-1 -08 1 R

0.1tan(46.79°) = 0.11 = pole = —0.19 + 0.11 = —0.08

From the above analysis, 08
z+0.
b=) =K 508

And the magnitude K is obtained from the magnitude condition at z,.

ID(Z)G(Z)Iz =1,

=2z4

z+0.1

=1,
(2 4+0.08)(z — 1) |- _g.194j01

or K = 1.3196. Therefore,
z+0.8

D(z) = 1.3196 — -

is one possible controller.
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4. Consider the following feedback control system, where

Glz) = 4950.5(z + 1)(10001z + 9999)2
1123 — 12.78222% — 7.0396z + 8.8218

i @ 6 D(z) G(z) —c

Determine thc gain and phase margins of the closed-loop system. Design the simplest controller D(z),
such that gain margin of the system is increased by 100dB. Assume the sampling period T = 2s.

HinT:

r

8 2 2
W [GJ (1) = [G(z) 4950.5(z + 1)(10001z + 9999) 5000(w + 10000)

] o= LT/ = [1123 —12.782222 — 7.0396z + 8.8218]z= e ww+0.00)(w + 10)°

Solution: From the w-transform of G

5000(w +10000)> 5% 10'%(1 4+ w/10000)2
w(w +0.01)(w +10)  w(l +w/0.01)(1 + w/10)’

w [G](w) =

we deternine the cut-off frequencies and the Gaingg = 20 log(5x10'?) dB = 253.98dB to plot the
asymptoric bode plots.
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In order 1o determine the gain and phase margins, we first need to determine the phase and the
gain-crossover frequencies.

The phasc-crossover frequency is determined from the bode plots, when phase angle becomes —180°
for the first time. From the asymptotic phase-bode plot, we observe that the —180° crossing is at
the mid point of w = 0.1 and w = 1. Since the horizontal scale is logarithmic, the mid point is such

that
1

log(wp) = %(log(O-l) + log(l)) =2

or
wp = 10712 x 0.32rad/s.

At the mid point of w = 0.1 and w = 1, the gain is approximately —20dB + 253.98dB = 233.98 dB.
As a result. the gain margin is approximately —233.98 dB.

The gain-cross-over frequency is determined from the bode plots, when the gain is 0dB for the first
time. From the asymptotic gain-bode plot, we observe that the 0dB gain is between w = 1000 and
w = 10000. At w = 1000, the gain is —200dB + 253.98dB = 53.98dB; and at w = 10000, the gain
is —260dB + 253.98dB = —6.02dB. So, using the straight-line equation, we get the gain-cross-over
frequency. such that

log(10000) — Iog(1000)> ( (0) - (53.98)) _ 53.98
60

log(wg) — 10g(1000) = ( (~6.02) — (53.98)

or
wg = 109%98/60+3 7937 rad/s.

Again using the straight-line approximation, we get

(—180°) — (—270°)
log(10000) — log(1000)

Phase - (=270°) = (
w=7937

) (1og(7937) - log(lOOO)) = 80.97°,

or
Phase‘ = —189.03°.

w=7937
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As a result, the phase margin is approximately —189.03° + 180° = —9.03°.
The systcem is unstable. since the gain margin is —233.98dB. and the phase margin is —9.03°.

We may proceed to design the desired compensator as a lead or a lag compensator. However, in this
case, the lag compensator design is a lot simpler; since all we need to do is to supply —100dB gain
at a low cnough frequency, so that the phase-angle of the lag compensator does not interfere with
the phasc cross-over frequency. The lag compensator is given by

1+ jw/wr
1+ jw/(we/B)
Choosing the cut-off frequency wy, of the compensator at least 10 times slower than the gain-crossover

frequency wg = 0.32rad/s. so that the negative phase angle of the compensator doesn’t affect the
phase angle directly, we get the lag compensator in the w-transform domain as

W [D](jw) =

1+ jw/0.01
1+ jw/(0.01/8)"

Since this gain is to be reduced by 100 dB by the lag compensator, the compensator gain 3 is such
that

W [D](jw) =

|3],5 = 201log(B) = 100,

or § = 10". However. we need to remember that this value of £ is too large to be practically feasible.

Finally. D(z) is determined from

z=1"
z+1

[1-i-w/10‘2]w=

D(z) = [ [D]w)] = [T w/mo7

or




