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1. Consider the following system with a sampling period T' = 0.1 second. Obtain an expression for the

transfer function C(z)/R(z). : (50pts)
r(t) e(t) 1 ut) - u(t) ZOH 1 c(t)
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s+2
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2. Consider the following feedback control system with a sampling period T' = 0.1 second.

2+ 0.5 c(k)

o ]
’\? D(z) . | (z=02)(z-08) i

(a) Assume a PI controller in the form

K,
D(z) =K .
(2) 1+ -1
Choose K> (in terms of K1), such that the slowest open-loop pole is canceled, and determine the
range of stability for all K; with this choice of K. (20pts)
(b) Design a first-order compensator such that
D(z)=KZ"2,
Z2—p1

where K, z1, and p; are the gain, the zero, and the pole of the compensator, respectively, such that
the following conditions are satisfied.
i. The maximum percent overshoot is between 1% and 3% for a unit step input.
ii. The 2% settling time is less than 0.4 second.
(30pts)
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1. Consider the following system with a sampling period T' = 0.1 second. Obtain an expression for the
transfer function C(z)/R(z).
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Solution: Assuming that there are pseudo samplers at the input and the output, we write the relation-
ships among pseudo sampled signals.

C*(5) = —=Gaon(5)U"(s),

where ()* represents a pseudo sampled signal, and G0y (s) is the transfer function of the zero-order
hold (ZOH). So,

¢ C(z):Z;IZ[ [ ]
)Gm o)

Also
ot - (2) (2
or
(H_m%oa( )) U*(s) = —+—23*( 9,
and

(002 524 o= 2 [

Solving for U(z) from the above equation and substituting into the expression for C(z), we get

e W il )| i [izn

R(z) z—1 40 1
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Next, we need to determine all the z transforms of the inverse Laplace transforms. So consider

- -1_1T 1 1 7]
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z s(s+1) 2 I s s+1]]

_z—l_ z z
T 2z |z—-1 z-eT

z—1 1-eT ~ 0.0952
z—e T z—eT " 2-0.9048’
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, 1 z z
Z|c? = ~
( [ [s+2“ z—e 2T~ 7 -0.8187’
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z—e€ z —e 5T
_ 1 z—1 z—1
5 4(z—eT) ' 20(z— e 5T)
1 (2-1)(4z - (57T — e T))
T 5 20(z - e T)(z — e=57)
1__ (z—1)(4z — 2.1278)

oo

5 20(z — 0.9048)(z — 0.6065)

Substituting all the expressions into the C(z)/R(z) expression gives

T =) (=)

R(z) 1 (z-1)(4z—- (55T —e )\’
1+ (5 T T 0 —e )z = e 50) )

After rearranging some of the expressions above, we have

C(z) 20(1 — e T)z(z — e 57)

R(z) ~ (4G — e 1)z — e ) — (- {4z = (e~ — 1)) (z - &)

1.9033z(z — 0.6065)
(24(z — 0.9048)(z — 0.6065) — (z — 1)(4z — 2.1278)) (2 — 0.8187)

~
~

2. Consider the following feedback control system with a sampling period T' = 0.1 second.

T . 2405
/\P b (z—02)(z - 08)

(a) Assume a PI controller in the form

K,
z—1
( Choose K> (in terms of K;), such that the slowest open-loop pole is canceled, and determine the
range of stability for all K3 with this choice of K.

D(z) = K1 +
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Solution: Rewriting the controller, we have

Ko _Ki(z-1)+ K, ___Klz—(l—Kz/Kl)

-1 z—1 z—1

D(Z) =K, + 2
Since the slowest pole is at 0.8, we choose the zero of the controller, such that

1-Ky/K; = 0.8,

or
Ky =0.2K;.
For this choice, the controller becomes
K z2-—0.8
D(Z) = K]_ a—1

The poles of the:closed-loop system can be determined from the solution of the characteristic
equation 1 + D(2)G(z) = 0, where G(z) is the plant transfer function, so

(2-0.2)(z—1)+ K1(2 + 0.5) = 0,

22+ (K1 —1.2)z + (0.5K; +0.2) = 0.

To determine the range of stability for all K7, we can use Jury’s stability test criteria. Since
the characteristic polynomial ¢(z) = 22 + (K1 — 1.2)z + (0.5K; + 0.2), the order of the system
n = 2. The two boundary conditions are

q(1) >0,

(1)% + (K1 — 1.2)(1) + (0.5K1 +0.2) > 0,
K; >0, (2.1)

and _
(-1)"q(-1) >0,

| (—1)‘2((-‘1)2 + (K1 - 1.2)(=1) + (0.5K; +0.2)) >0,
Ky < 48. (2.2)

The pole-product condition is
laol < an,

0.5K; +0.2 <1,
~1<05K;+0.2< 1,
—24 < K < 1.6. (2.3)

The rest of the conditions are to be obtained from the Jury’s table. However, since we have a
second-order system, the table will not give any additional conditions. From the intersection of
the regions described by Inequalities 2.1-2.3, we conclude that the system will be stable, when

0< Ky <1.6.

The regions descfibed by Inequalities 2.1-2.3 can also be observed from the root-locus diagram
of the system for K; > 0.
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(‘ K; =16 ————

(b) Design a first-order compensator such that

Z — 21
)
22—

D(z)=K

where K, 21, and p; are the gain, the zero, and the pole of the compensator, respectively, such that
the following conditions are satisfied.

i. The maximum percent overshoot is between 1% and 3% for a unit step input.

ii. The 2% settling time is less than 0.4 second.

Solution: We determine the restrictions on the location of the desired pole locations from the
performance specifications. '

Given Requirements General System Restrictions | Specific System Restrictions

From the a-M), curves,

Maximum percent' 0.01 < M, < 0.03. ¢(=0.38
overshoot for a unit step
input provides the broadest range

of a values, where

-80° < a < 5°.

For tog, = koo, T < 0.4s,

) and kg, < 0.4/0.1 =4,
Settling time for a unit - p< (0.02)1‘/("2%“1). when T' = 0.15;
step input ' : .
p < (0.02)Y/(4-1) = 0.2714.
‘P When we mark these restrictions on the z-plane, we determine that a possible set of desired pole

locations is at z4 = 0.1 + 50.2.
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S

2 = R(2) + jO(z) = e~ T V1-¢2uT

The deficiency angle, ¢, needed at the desired location to ensure that one of the root-locus
branches goes through the location, can be determined from the angular condition.

¢+ L(zg — (~0.5)) — £(zq — (0.2)) — (24 — (0.8)) = (2k + 1),
for an integer k. For z4 = 0.1 + 0.2,

[ (02)=(0) 1 { (0.2) = (0) L { (0.2) = (0)
¢ +tan”! ((0.1)—(-0.5)) ~ tan™ ((0.1) —(0.2)) ~ tan™ ((0.1) —(0.8))

= 180° + k360°,
¢+ 18.43° — 116.57° — 164.05° = 180° + k360°,

or ¢ = 82.18°.

In order to preserve the system order so that transient specifications stay accurate, we need
to cancel a pole or zero and place another one in such a way that the pole-zero combination
provides the necessary deficiency angle at z4. The best choice for cancelation is the pole at 0.8,
since it is the slowest. E

"A 7S

-+ j1

82.18° — 74.05° = 8.13° 4w
| © H—x¢ ~®—1 >
-1 -0.5 0.2 08 1 R
~—

0.2 tan(8.13°) = 0.0286 = pole = 0.1 — 0.0286 = 0.0714



EE 331

Exam#1 Solutions Winter 2001

From the above analysis, -
z—0.8

z—0.0714°
And the magnitude K is obtained from the magnitude condition at zg.

D(z) =K

DEGE,,, =1,
z+0.5 -1
(z—0.0714)(z — 0.2) 2=0.14j0.2 ’
or K = 0.0714. Therefore, one possible compensator is
z—0.8

6/6



