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1. Consider the following negative unity-feedback control system,

r__&.@ ‘ To ‘ D(z) ZOH G(s)

_ s(s +1.44)
G =1-roar T
and T = (7/4)s.

(a) Determine the transfer function C(z)/R(z). Simplify the result as much as possible.

(b) Assume that an integral controller

D(z) = K—2

z-1

needs to be designed. Determine the range of stability in terms of the controller gain K.

~ 2. A controller for the following negative unity-feedback system with 7' = 0.5s is to be designed.

r z+0.2 ¢
( ) b(z) (z=02)(z -1

(a) Design the simplest controller D(z) that satisfies the following requirements.

e The steady-state error is zero for a unit-step input.
e Maximum percent overshoot is 5% + 1% for a unit-step input.
o The 2% settling time is less than 2.5 seconds.

(20pts)

(15pts)

(20pts)

(b) Design another controller cascaded to the first one, such that the steady-state error for the unit-ramp
input is reduced to one fourth of its value, and the location of the existing closed-loop poles stay

approximately the same.

3. Consider the following feedback control system.

r @ ¢ 5000(z + 1)

Y - Dez) 2(z — 1)(101z + 99)

and the gain margin of the system is about 20dB. Assume the sampling period T = 2s.

(15pts)

Design the simplest controller D(z), such that the steady-state error for a unit-ramp input e(co) < 0.01,

(30pts)
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1. Consider the following negative unity-feedback control system,

T /—’3 € Q e D(z) [

where
s(s +1.44)

Glo) =1~ F044)2 +1°

and T = (7m/4)s.

(a) Determine the transfer function C(z) /R(z). Simplify the result as much as possible.

Solution: Assuming that there are pseudo samplers at the input and the output, we write the
relationships among the pseudo sampled signals.

C*(s) = G(S)GZOH(S)D*(S)E*(S)»

— where ()" represents a pseudo-sampled signal, Gzou(s) is the transfer function of the zero-order
hold (ZOH), and D*(s) is the Laplace transform of the gain D. So,

C(z) = (z — 1) z [ﬁ;l [9@] ](z)D(z)E’(z).

S

Also
E(z) = R(z) — C(z).
Substituting U(z) into the expression for C(z), we get

Cz) _ ((z=1)/2)2 [£;' [G(s)/s]](2)D(z)
R(z) 14+ ((z-1)/2)2[£;1[G(3)/s]](z)D(z)’

Next, we need to determine the z transform of the inverse Laplace transform. So consider
z—1 1| G(s) _[z-1 1|1 s+14
< Z )Z[‘:s [ s || ={F)2 |57 Groaazs1]|@
z—1 1 [1 s+ 0.44 1
< 2 )Z [58 ['s’ T 51040711 (s +0.44) +1”(z)
_(z-1 z 2?2 - 0.52 B 0.5z
S\ 2 z=1 22-2405 22—-2+405
z—1 z 22
z z—=1 22-2405

21 0.5
22-24+05 22-2+405
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Since, from the transform pairs

w

e sin(wt)1(t) ¢— —o
(L) ¢ o,

s+ a

—at
HA(t) o — T
¢ cos(w)1(t) (s+a)? +w?

we have the pairs

1

—0.44¢ _:
t)1(t —_—
¢ sin(?) ()H(s+0.44)2+1’

s+0.44

—0.44¢
t)A(t —_—
e eos(MIY) = T

Moreover, since t = kT = (m/4)k, and the transform pairs

asin(b)z

k .
a” sin(bk)1(k) «— 22 — 2acos(b)z + a2’

z(z —acos(h))
22 — 2acos(b)z + a2’

a¥ cos(bk)1(k) +—
we have the pairs

(€044 D) ¥ sin((nr/4)k) 1 ()
e 04/ gin(n/4) 2 052

— _ ,
2% — 2e70-44(7/4) cos (7 /4) 2 + (6—0.44(7r/4))2 22—-2+05

(6_0.44(#/4))’c cos((m/4)k)1(k)
2% — e 044(/4) cog (7 /4) 2 22— 05z

— = .
2% — 2e70-44(n/4) cos(m /4) z + (e~0-44(r/4)) 22~ 2405

Substituting the z-transform expression into the C(z)/R(z) expression gives

0.5D(z)
) 22—2+4+05+0.5D(z)

a3
oo

(b) Assume that an integral controller

D(z) = K-~

z-1
needs to be designed. Determine the range of stability in terms of the controller gain K.

Solution: For D(z) = K(z/(z — 1)), the characteristic equation is

z2——z+0.5+0.5K< id ):0,
z—1
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or
2~ 222+ 05(K +3)z— 05

z—1

0.

Therefore the characteristic polynomial is

q(z) = 2% — 222 + 0.5(K + 3)z - 0.5.

To determine the range of stability for all K, we can use Jury’s stability test criteria. In our

case, the order of the system n = 3. The two boundary conditions are
q(1) >0,

(1) = 2(1)2 + 0.5(K + 3)(1) — 0.5 > 0,

K >0, (1.1)
and
(—l)nq(-l) > 07
(=1((-1)® = 2(=1)% + 0.5(K + 3)(~1) — 0.5) > 0,
K < 10. (1.2)
The pole-product condition is
|a0| < an»
|[-0.5] < 1,
and it is satisfied independent of K.
The rest of the conditions is to be obtained from the Jury’s table.
20 2! 2?2 28
ag = —0.5 a; = 0.5(K + 3) az = ~2 az =1
az =1 ay = =2 a; =0.5(K +3) ap = —0.5
oh=der| 0 2] of =aee | 202 ] ah=de| 20 2
~0.5 1 _ —-0.5 0.5(K +3)
= det [ 1 05 ] = det [ 1 2 ]
al = -0.75 al = -0.5K - 0.5

Since we have a third-order system, the table will only give one more additional condition.

|ag| > ap_l,
|-0.75| > |-0.5K — 0.5],
-0.75 < -0.5K — 0.5 < 0.75,
-0.25 < —0.5K < 1.25,
0.5> K > -2.5,
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(1.3)

From the intersection of the regions described by Inequalities 1.1-1.3, we conclude that the
system will be asymptotically stable, when

0< K <0.5.

2. A controller for the following negative unity-feedback system with T' = 0.5s is to be designed.

z+0.2

(z=02)(z-1)

b

(a) Design the simplest controller D(z) that satisfies the following requirements.

* The steady-state error is zero for a unit-step input.

* Maximum percent overshoot is 5% =+ 1% for a unit-step input.

o The 2% settling time is less than 2.5 seconds.

performance specifications.

Solution: We determine the restrictions on the location of the desired-pole locations from the

Given Requirements

General System Restrictions

Specific System Restrictions

The steady-state error is
zero for a step input.

Open-loop gain has a pole at 1.

Open-loop gain
z+0.2
= D) ((z Z0.2)(z — 1)) '

which already has a pole at 1.

Maximum percent overshoot
for a unit-step input

M, %~ 0.05 % 0.01.

From the a-M, curves,
¢=0.7

provides the broadest range of
« values, where
—60° < o < —20°.

Settling time for a unit-step
input

p < (0.02)Y/(kama—1),

For toys = koy, T < 2.5s, and
kows < 2.5/0.5 = 5, when
T =0.5s;

p < (0.02)Y/6-1 = 0.3761.
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When we mark these restrictions on the z-plane, we determine that a possible set of desired-pole
locations is at z4 ~ 0.15 & 50.3.

The deficiency angle, ¢, needed at the desired location to ensure that one of the root-locus
branches goes through the location, can be determined from the angular condition.

¢+ £(24 = (-0.2)) — £(zq — (0.2)) — £(2q — (1)) = (2k + 1),
for an integer k. For z4 = 0.15 + j0.3,
(03— N L 03)-(0) \ 4 ((03)=(0)
ot ( ) - ;) - )

(0.15) — (—0.2) 0.15) — (0.2 0.15) — (1)
= 180° + k360°,

¢ + 40.60° — 99.46° — 160.56° = 180° + £360°,
or ¢ = 39.42°.

In order to preserve the system order so that transient specifications stay accurate, we need
to cancel a pole or zero and place another one in such a way that the pole-zero combination
provides the necessary deficiency angle at z4. The best choice for cancelation is the pole at 0.2,
since it is the slowest, and since cancelling the other pole at 1 prevents the satisfaction of the
steady-state requirement.
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A s

-+ j1

zq = 0.15 + 50.3

. . . Tm ran—1 (0.2-0.15) 0.46°
- = an — =9.
19.42° — 9.46° = 29.96 ol 003
Pan
f © 19— —%- —
-1 -0.2 0.2 1 ®
—

0.3tan(29.96°) = 0.17 => pole = 0.15 — 0.17 = —0.02

From the above analysis,
z—0.2

z+0.02°
And the magnitude K is obtained from the magnitude condition at z4.

D(z) =K

|D(2)G(2)],_, =1,

=2z4

z+0.2
(2 +0.02)(z = 1){,_9 154505

=1,

or K = 0.6743. Therefore.

z—0.2

is one possible controller.

(b) Design another controller cascaded to the first one, such that the steady-state error for the unit-ramp
input is reduced to one fourth of its value, and the location of the existing closed-loop poles stay
approximately the same.

Solution: The system is type 1, so the steady-state error

1
e(o0) = o
Since egesired (00) = (1/4)e(00),
1 _1/4
Vdesired K'U ’
or
K'Udesired = 4Kv

To increase Ky to Ky, .4, We need to have a lag compensator with gain
B =4
For B = 4, the lag compensator becomes

z=(1-1T)  z2-(1-1/T)
2= (1-1/(T)  =-(1-1/(4T))

D'(z) =
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To have the minimal effect on the existing poles, the pole and the zero of the compensator should
be as close as possible to each other. We can accomplish this necessity by choosing the pole and
the zero very close to one and a large value for T. For T = 20,

z —0.95
D'(z) = —~—
()= 5085
is one possible compensator.
3. Consider the following feedback control system.
i € 5000(z + 1)3 ¢
+ D(=) 2(z — 1)(101z + 99) o

Design the simplest controller D(z), such that the steady-state error for a unit-ramp input e(oo0) < 0.01,
and the gain margin of the system is about 20dB. Assume the sampling period T' = 2s.

Solution: For G(z) = 5000(z + 1)%/(2(z — 1)(101z + 99)), the steady-state error for a unit-ramp input
is given by

where K, is the velocity steady-state error coefficient; and

o=ty (7)) peoe) = () 0 (B rom)

e 5000(z + 1) \ 5000(2)% \

Since egesired(20) < 0.01,
> 100,

Vdesired m

and setting K, = Ky, ., we get D(1) = 1. The w-transform of G

B _ 5000(z + 1)3
wlG](w) = [G(Z)]z:% - [z(z - 1)(1o1z+99)L:i_ﬂ
3 3
5000 (l—fﬂ + 1) 5000 (L)
_ 1—-—w _ 1—w
1+w 1+w_1 1011—|-w+99 1+w 2w 2(100+w))
1-—w 1—-—w 1-—w 1—w 1-w 1—-w
10000 100

" w(l +w)(100 + w)  w(l +w)(1 +w/100)’
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The phase-crossover frequency for D(z) = 1 is when

£(W [G](jw)) = —180°.

In our case,

100
L\ - - - = —180°,
(]wp(l + juwp)(1 +_7wp/100))

£(100) ~ £ (jwp) — £(1 + jwp) — £(1 + jwp/100) = —180°,
(0°) — (90°) — tan™* (wp) — tan™! (wp/100) = —180°,

tan~! (wp) + tan™? (wp/100) = 90°.

After taking the tangent of the above equation, we get

(tan(tan‘l (wp))) + (tan (tan™ (wp/100) ))

1- (tan (tan™ )(tan tan~1( wp/IOO)))

o) + /100) _
= (ap) ap100) =
1

—wp/IOO =0,

= tan(90°),

or wp = 10rad/s. Note that we could have easily determined the phase-crossover frequency from the
Bode plots of W [G](]w) as well.

Gain-Margin = ~\W [G](jwp)‘dB = —20log (‘w [G](jm)l) = 0.0864 dB.

We may proceed to design the desired compensator as a lead or a lag compensator. Here, we will
consider both designs.

Lead compensator design

One approach to obtain a gain margin of 20dB is to design for a new phase-crossover frequency,
where the existing gain is —~20dB. To get the maximum phase-angle contribution, we choose
the mid-frequency of the lead compensator at this frequency. In other words,

)w [G](jwm)de — —20dB,

or
l - - 100 = —20dB,
| Jwm(1 + jwm) B
100 ~20/20
- - - =10 =0.1.
l)wm(l + jwm)(1 + ]wm/loo) )

Solving the above equation for wy,, we get wy ~ 31rad/s'. (Actually, wy = 30.9018 rad/s.)
Therefore, if the new phase-crossover frequency is 31rad/s, then the gain margin will be approx-
imately 20 dB provided that the gain profile about the new phase-crossover frequency stays the
same. The phase angle of a lead compensator needed at wm = 31rad/s is

¢m = —180° — L(W [G] (jwm)) + 12° = —180° — (—195.38°) + 12° = 27.38°

'The mid-point of 10rad/s and 100 rad/s is 1/(10)(100) rad/s = 31.6228 rad/s.
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assuming that 12° would compensate for the gain contribution of the lead compensator.

The parameter o of the lead compensator is given by
o 1 — sin(¢m)
1+ sin(fm)

and the lead compensator in w-transform domain

_ w/(Vown)+1  w/18.86+1
W (D]w) = w/(wm/Va) + 1 w/5096 +1°

= 0.37,

Finally, D(z) is determined from

Do) = [W [D](w)] _ [w/18.86 + 1]w=z‘

w=2 21 w/50.96 + 1 =1 ’
o 0.90
z+0.
D(z)=1.0 )
(2) = 1.03 (z n 0.96)

Note here that the new phase-crossover frequency is moved due to the additional 12° added to
compensate for the gain contribution. Indeed, with the designed lead compensator, the new
phase-crossover frequency is 49.2rad/s, and the gain margin is 22.56 dB.

Lag compensator design

Since the lag compensator needs to supply —20dB at w = 10 rad/s without changing the phase-
crossover frequency. the high corner-frequency (that is associated with the zero) of the compen-
sator must be at least 10 times lower than the phase-crossover frequency wp. As a result,

jw/(wp/50) + 1
jw/(wp/(508)) + 1’

where the frequency is 50 times lower. The gain requirement of the compensator sets the value
of 3, such that

W [D](jw) =

—20log(B8) = —20 — 3,

where the —3dB drop at the corner frequency is considered. In our case, we get 3 =~ 14.
Therefore,
w/(10/50) + 1 Sw+1
W [D](w) = /(30/50) = :
w/(lO/(50(14))) +1 T0w+1

Finally, D(z) is determined from

_ [ Sw+ 1 ]
w:%z—l 70w +1 w=z—1 ’

z+41
o 2/3 0.6667
z — z — U.
D(z) = (6/71) (-———Z & 69/71) — 0.0845 (————z - 0.9718) .

The new phase-crossover frequency is 9.0135rad/s, and the gain margin is 21.20dB.

Note that even though the lag-compensator design is considerably simpler, the bandwidth and the
settling time of the system with the lag compensator are also considerable narrower and longer,
respectively.



