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1. The block diagram of a control system is given in the following figure.

(a) Obtain a state-space representation of the system without any block-diagram reduction. (15pts)
(b) Determine the state variable x(k) for all k > 0; when y(—1) = 0, y(0) = 1, and u(k) = (—=1)F1(k).

(20pts)
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2. A discrete-time linear control system is described by

x(k+1)=[—(2)§ —2:2]x(k)+[_g _ﬂu(k),

yk)=[0 1]x(k)+[1 0 ]u(k),

where u, x, and y are the input, the state, and the output variables, respectively.

(a)

(b)

Determine whether or not all any final state can be achieved from any other state by selecting a
control sequence. If such a selection is possible, then determine the control sequence that would
achieve the state [ -5 2 ]T from the initial state [ 00 ]T. (15pts)
Determine whether or not an initial condition can be uniquely determined by observing the future
values of the output and control. If such an observation is possible, then determine the initial
condition x(0), when the output sequence is {y(k) I k=0,1,2,... } = { 2, 3.6, 4.72, 7.144, ... } for
the input sequence {u(k) | k =0,1,2,...} = {[1 1]",[-1 -1]%,[1 -1]",[0 0]",...}.

(15pts)

3. A discrete-time linear control system is described by

x(k+1)=[_(2):§ _2:2]x(k)+[—g _‘i‘]u(k),

y(k)=[1 0 ]x(k),

where u, x, and y are the input, the state, and the output variables, respectively.

(a)

Design a state-feedback controller, such that the poles of the closed-loop system are at z = 0.1 and
z=0.8. (20pts)

(b) Implement the controller in the previous part by assuming that only the output is available. (15pts)
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1. The block diagram of a control system is given in the following figure.
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(a) Obtain a state-space representation of the system without any block-diagram reduction.

Solution: In order to obtain a state-space representation without any block-diagram reduction or
without determining the closed-loop transfer function, we need to realize the individual blocks
and use the complete block diagram to generate the state-space equations.

T
ol T e
=

(a) The feedforward gain (b) Controller realization form.
block.

There is no need to generate a realization for the feedback gain block, since it is already in a
realization form. The connected and “expanded” block diagram is shown below.

S_—
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After assigning the state variables as shown in the figure, we obtain
z1(k 4+ 1) = z1(k) + (u(k) — z2(k)) = z1(k) — z2(k) + u(k),
z2(k +1) = z1(k + 1) = 21(k) — z2(K) + u(k),
and
y(k) = z1(k + 1) = z1(k) — z2(k) + u(k).

And the state-space representation is
$1(k+1) . 1 -1 :El(k)) 1
[ zo(k +1) ] - [ 1 -1 ] [ wak) | T 1 | )

yky=[1 —1] [‘”1(’“) ] + [1]u(k).

Note here that the observer realization form results in the same realization diagram.

(b) Determine the state variable x(k) for all integer £k > 0; when y(—1) = 0, y(0) = 1, and u(k) =
(=1)*1(k).

Solution: The state variable solution, which is obtain by repeated application of the state equation,
is given by
x(k) = A¥x(0) + A¥*"1Bu(0) + A*2Bu(1) +... + ABu(k — 2) + Bu(k — 1)

k
= AFx(0) + > A¥Bu(i - 1),

i=1
for k > 0, and for a discrete-time system described by
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where u, x, and y are the input, the state, and the output variables, respectively. For our
system, the input variable u(k) for k£ > 0 is given, but we need to determine x(0) and A*.

The initial condition x(0) may be determined from the output values provided. From the state-
space equations, we have

y(0) = z1(0) — 22(0) + u(0) = 1,

and

On the other hand, we also have

71(0) = z1(=1) — z2(-1) + u(-1),
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and

CEQ(O) = .’El(—l) - 1122(—1) + U(—l)
From the expression of y(—1), we observe that z;(0) = y(—1) = 0 and z2(0) = y(—1) = 0; or

x(0)=[8].

Even though x is the zero vector, we still need to determine A* for the other expressions in the
state-variable solution.

We may use a number of different methods to determine A*. One of these methods is by
repeated multiplications of A, until we observe a pattern. Although, this method is quite simple
to proceed, we have to remember that sometimes the pattern may not be so obvious. Another
method is from the z-transform of the state-space equations, where we get

AR = Z71 (2] — A)7H],
or

AR = z7 [ 2(2 - A)7].
Here, we will use both of these methods to demonstrate the use of each method. Since
A= [ i j ] ,
we get
w=an=[1 )1 D=0 0]
A*=A%4=0

At=A3A =0,
or A¥ = 0 for integer k¥ > 2. Under these values of x(0) and A*, we get

k
x(k) = AFx(0) + ZAk_iBu(z’ -1)

=1

= ABu(k — 2) + Bu(k — 1)

= i j ] [ i ] (-1)*21(k — 2) + [ i ] (-1 1k - 1)

= 8 ](-1)k~21(k—2) + [ } ] (-D* (k- 1)

T 1\k—1
_ E_Bk_l]l(k—l).
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Therefore,
[0 0], if k < 0;

(D% (=117 ik > 1

2. A discrete-time linear control system is described by

x(k+1) = [ ‘3:2 ‘2:2 ] x(k) + [ 'g “‘11 ] u(k),

y()=[0 1]x(k)+[1 0]u(k),

where u, x, and y are the input, the state, and the output variables, respectively.

(a) Determine whether or not all any final state can be achieved from any other state by selecting a

control sequence. If such a selection is possible, then determine the control sequence that would
achieve the state [ -5 2 ]T from the initial state [ 00 ]T.

Solution: The property of being able to reach to any arbitrary final state from any other initial

state is called reachability. One method to check the reachability of the system is by checking
the rank of the controllability matrix

C(A,B) = [ B | AB | | A"lB ]
In our case, the system order n = 2, and
-9 41-9 08
G(A’B)‘[BMB]_[ 3 -1| 3 -02 ]

In our system, we need to have 2 linearly independent rows or columns of € for reachability. Since
the first two columns of € are linearly independent, we conclude that the system is reachable
and any final state can be achieved from any other state by selecting a control sequence. To
determine the control sequence that would achieve the state [ -5 2 ]T from the initial state

[ 00 ]T, we may use a formula that can be derived by repeatedly applying the state-space
equation.

u(n — 1)
x(n) — A"x(0) = C(A4, B)
u(0)
for an nth order discrete-time system described by
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where u, x, and y are the input, the state, and the output variables, respectively. In our case,
n = 2, and

BRI a0
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In order to solve for the control variable, we may use the pseudo-inverse of @(A, B), such that
C(A, B)* = ¢e(4, B)((‘Z(A,B)G(A,B)T)_l, that exists when €(A, B) has full rank. As a result,

u(1) [ —9 3 -9 3 -1
up(l) | | 4 -1 -9 4 -9 08 4 -1 -5
w() | | -9 3 3 -1 3 —02]] -9 3 2
u1(0) | 0.8 —0.2 08 —0.2

[ 0.50

0.96

“ 1 050
| 0.19

Therefore, the control sequence, that would achieve the desired behavior in 2 steps, is

0.50 0.50
u(0) =~ [ 0.19 ] , and u(l) = [ 0.96 ] .

However in this case, the controllability index of the system is 1, which is observed from the
minimum number of the A*~1B terms that needs to be included in €(A, B) to reach full rank.
When we consider the C(A, B) matrix, we observe that the first term B generates the rank of
the C(A, B) matrix, and the next term AB is not necessary for the rank requirement. As a
result, we should be able to achieve the final state in 1 step.

x(1) = A'x(0) = [ B ] [ u(0) ]

Since B is invertible, solving the above equation for u(0), we get

=17 3] ([ 3]-[8)

or the control sequence, that would achieve the desired behavior in 1 step, is
1
u(0) = [ 1 ] .

(b) Determine whether or not an initial condition can be uniquely determined by observing the future
values of the output and control. If such an observation is possible, then determine the initial
condition x(0), when the output sequence is {y(k) | k=0,1,2,... } = { 2, 3.6, 4.72, 7.144,... } for

theinputsequence{u(k)‘k=0,1,2,...}={[1 l]T,[—l —I]T,[l —l]T,[O O]T,...}.

Solution: The property of determining the initial condition from the future values of the output is
the observability property. To ensure observability of the system, the rank of the observability
matrix should be full. The observability matrix for an nth order system

c
CA
oG A)=|—" |

CAn—l
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where A and C are the state and the output matrices of the system, respectively. In our case,

O(C. A) = C _ 0 1
(©.4) = cAl |08 34|

In our system, we need to have 2 linearly independent rows or columns of O for reachability.
Since the determinant of O is non-zero, we conclude that the system is observable and the initial
state variable can be obtained from the output variables. To determine the initial conditions,
we may use a formula that can be derived by repeatedly applying the output equation.

y(0) D 0 0 u(0)
y(1 CB D 0 u(l
Wl o axo | P ) .
y(n —1) cr-'B Cn2B D || un-1)
In our case, n = 2, and
1
2 0 1 1 0 0 0 1
[3.6]_[0.8 3.4]x(0)+[3 -1 1 0] -1
-1
Solving for the unknown initial condition, we get
1
(0)_01‘12_1000 1|
=108 34 3.6 3 -1 1 o] -1/}
-1

and after some matrix manipulations, we obtain

x(0)=[‘1].

3. A discrete-time linear control system is described by

LGB i EORY g P

y(k) =[1 0 ]x(k),

where u, x, and y are the input, the state, and the output variables, respectively.

(a) Design a state-feedback controller, such that the poles of the closed-loop system are at z = 0.1 and

z=0.8.

Solution: Based on the desired-pole locations, the desired characteristic polynomial is given by

gey(2) = (2 = (0.1)) (2 — (0.8)) = 22 — 0.92 + 0.08.
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Assuming

u(k) = —Kx(k) = — [ Z; ’,:Z ] x(k)

for some state-feedback matrix K. The characteristic polynomial of the system under state-
feedback control can be determined from the denominator of the transfer function, such that

ge(z) = det(z2I — (A — BK))

R (AR I FE))

= 22+ (=1.2 — Oky + 3ky + 4ks — kg)z + (0.2 + 1.8k; — 0.6k — 4ks + kg — 3k1kg + 3koks).

Setting gc(z) = gcy(2), we get
0.2 4+ 1.8k; — 0.6ky — 4k3 + kg — 3k1ky4 + 3koks = 0.08,

and
—1.2 — 9%y + 3ko + 4ks — kg = —0.9.

Since we have only 2 equations and 4 unknowns, we have some freedom of choosing two of the
unknowns arbitrarily. One possible choice would be k3 = —1 and k4 = 1. For this choice, we
get k1 = —0.1033, and ks = 1.4567. As a result, we have

~0.1033 1.4567
ol =t

or
0.1033 —1.4567

u(k) = [ X i ]x(k).

If we would like to determine a more general solution, we may let k3 = a, and k4 = b. In this
general case, we have

p - ~018+87a+ 12a® — 2.4b — 3ab
b 27a — 9b ’

. _ —0.54+28.8a —8.1b + 12ab — 352
2= 27a — 9b '

as long as 27a — 9b # 0. Therefore, the general form of the state-feedback control is

0.18 — 8.7a — 12a% + 2.4b + 3ab 0.54 — 28.8a + 8.1b — 12ab + 3b2)
u(k) = 27a — 9b 27a — 9b x(k),

—a —b

for any a and b such that b # 3a.

(b) Implement the controller in the previous part by assuming that only the output is available.
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Solution: When only the output is available, state-feedback control can still be implemented if an
observer is used. If a system is reachable, we can place the closed-loop poles of the observer at
any desired location via error-feedback control. So assume

elb) = L(ub) =) = | * | () - 904)

for some observer-error gain matrix L, where § is the observer output variable. Arbitrarily
assuming that the observer poles are at 0.01 and 0.01, the desired observer-characteristic poly-
nomial

oy (2) = (z — 0.01)(z — 0.01) = 2 — 0.02z + 0.0001.

The observer-characteristic polynomial g, under the error-feedback control can be determined
from the denominator of the transfer function of the observer, such that

go(2) = det(zI — (A — LC))

=an ([ 1] ([ 08 e ][R]0 )
=22+ (=124 1))z + (0.2 — 3.41; — 9.615).
Setting go(2) = go,(2), we get
0.2 — 3.4y — 9.6l = 0.0001,

and
-1.2+1; = -0.02.

These two equations give [; = 1.18 and ls = —0.3971, and we obtain

e(k) = [ 1.1800

3o | 06 - 90,

where e and ¢ are the error-feedback control and the observer output variables, respectively.




