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1. A discrete-time linear control system is described by

x(k+1) = [ e _1}2 Jx(k) + [ : J u(k),

where v and x are the input and the state variables, respectively. Determine the solution x(k) for all
k > 0, when u(k) = 1(k). Simplify the expression as much as possible. (25pts)

2. A discrete-time control system is described by

x(k+1) = [ _8:3 0.15 ]X(k) + [ 8:22 ] u(k),

y(k)=[1 1 ]x(k),
where u, X, and y are the input, the state, and the output variables, respectively.

(a) Specify the minimum length control sequence necessary to transfer the state of this system from

[0 0]Tto[1 1]%. (15pts)
(b) Specify the control necessary to maintain the system in that state. Briefly discuss your result.
(10pts)

3. A discrete-time linear control system is described by
0 1 0
x(k+1)= [ _0.08 009 Jx(k) + [ 1 JU(k),
yk)=[05 1 | x(k),

where u, x, and y are the input, the state, and the output variables, respectively, and a sampling period
T=0.1s.

(a) Design a state-feedback controller, such that the following conditions are satisfied.
1. The maximum percent overshoot is between 1% and 3% for a unit-step input.
ii. The 2% settling time is less than 0.4 second.
(20pts)
(b) Design the necessary additions to the controller assuming that only the output is available. (10pts)

4. Consider a system described by the difference equation
z(k +1) = —z(k) + u(k),

where z and u are the state and the input variables, respectively. Determine the optimal control action
u(k) for k > 0 that would minimize the cost function

when £(0) = —1 and z(3) = 0. (20pts)
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1. A discrete-time linear control system is described by

x(k +1) = [ léQ _1}2 Jx(k) + [ (1) } w(k).

where u and x are the input and the state variables. respectively. Determine the solution x(k) for all
k> 0. when u(k) = 1(k). Simplify the expression as much as possible.

Solution: The solution to the discrete-time linear control system
x(k +1) = Ax(k) + Bu(k),
where u and x are the input and the state variables, respectively, is given by
k
x(k) = A*%(0) + Y A*~'Bu(i - 1).
i=1

In this expression, A* can be obtained in various methods. The method, that is based on the
z-transform of the state-space equations, gives

A = Z7 (22D - A)).

In our case.
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for k > 0. Therefore. we get

k
x(k) = A*x(0) + Y A*Bu(i — 1)

=1
1/2)% 1/2)% — (~1/2)*
:[(/) (1/2) (kl/Q)J"(O)
0 (=1/2)
(/2570 (/2 = (-2 1y

+;[ 0 (—1/2)k=i J [0 Ju(z—l)
_ w2k @2k - (-1/2) NN
= [ 0 (~1/2)} Jx(0)+; I: 0 Ju(z—l).

For u(k) = 1(k). and % (1/2)k~i = YEe(/2) = (1- (1/2)%) /(1= (1/2)) = 2(1 - (1/2)%); we

get

19 k _ k _ k

x(k):[u/?) (1/2)F —( }/2) Jx(0)+[2 2(1/2) }forkzo_
0 (—1/2)k 0

2. A discrete-time control system is described by

x(k +1) = [ s Jx(k) + [ oo J u(k),

y(k)=[1 1 ]x(k),
where u, x. and y are the input. the state. and the output variables, respectively.
(a) Specify the minimum length control sequence necessary to transfer the state of this system from

[0 0)Te[1 1]"

Solution: To determine the control sequence that would achieve the state [ 11 ]T from the initial
T

state [ 0 0 } . we may use a formula that can be derived by repeatedly applying the state-space
equation.
u(k —1)
x(k) — A*x(0) = [ B| AB|--- | A*1B ] :
u(0)

for an nth order discrete-time system described by
x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k),

where u, x. and y are the input, the state, and the output variables, respectively. For the
minimum length control sequence. first we choose k = 1;

x(1) — Ax(0) = Bu(0),
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1y 03 1 0| [050 (0)

1 -02 05 ]| 0|~ | o025 |49
The above matrix equation has two individual equations, the first one gives u(0) = 2. whereas
the second one gives u(0) = 4. Since there is no single value of u(0) that can satisfy both of the

equations, we conclude that there is no solution for the above matrix equation or the final state
may not be achieved in one step.

Next. we choose k = 2:

x(2) ~ A%(0) = [ B | AB | [;‘8; J

L] [ 03 17%T07 _[0.500]0.400 u(1)
1 -0.2 0.5 0] 025010025 u(0) |-
Solving the above matrix equation. we get
u(l) | (0500 0400 17 [ 1 _ 1 0.025 -0.400 I 4.286
u0) | | 0.250 0.025 1]\ -0.0875 =0.250  0.500 1] 7] —2857 |-
Note here that for £ = 2 = 5. we get the controllability matrix in the above equation; and

since the controllability matrix is invertible, the system is reachable. If we couldn’t have found a
solution for the above matrix equation. then there would have been no need to try for k > 2 = n,

In our case. the minimum length control sequence, that would achieve the desired behavior. is

{w(0). u(1)} ~ { —2.857. 4.286 }.

(b) Specify the control necessary to maintain the system in that state. Briefly discuss your result.

Solution: To maintain the system in that state, we need to have z(h+1) =z(k) = [ 11 ]T for

k > 3. In other words.

1 03 1 ][1 0.50
[1}‘[—0.2 0.5”1}*[0.25}”““)’
for k > 3. Similarly, the above matrix equation has two individual equations. the first one gives
u(k) = —0.3/0.5, whereas the second one gives u(k) = 0.7/0.25. Since there is no single value of
u(k) that can satisfy both of the equations. we conclude that there is no solution for the above

matrix equation or the final state can’t be maintained at [ 11 ]T. However, [ 11 ]T can be
reached in every two steps, since the system is reachable.

3. A discrete-time linear control system is described by

0

0 1 Jx(k)-&—[lJu(k),

x(k+1) = [ ~0.08 0.9

yk)=[05 1 | x(k),

where u. x. and y are the input. the state, and the output variables, respectively, and a sampling period
T =0.1s.
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(a) Design a state-feedback controller, such that the following conditions are satisfied.

1. The maximum percent overshoot is between 1% and 3%
ii. The 2% settling time is less than 0.4 second.

Solution: We determine the restrictions on the locatio

performance specifications.

for a unit-step input.

n of the desired pole locations from the

Given Requirements

General System Restrictions

Specific System Restrictions—’

Maximum percent
overshoot for a unit-step
input

0.01 < M, < 0.03.

—

From the a-M, curves,
(=08

provides the broadest range
of a values, where
-80° < a < 5°.

Settling time for a
unit-step input

p < (0.02)1/(kagzs =1).

For t2%s = kQ%ST < 0.4s,
and koo < 0.4/0.1 =4,
when T = (0.1s:

p < (0.02)Y/4-1 — 9714,

When we mark these restrictions on the z-

locations is at 24 ~ 0.1 + 70.2.

plane, we determine that a possible set of desired-pole

Z) - e—(wTej\/l—("’wT
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Based on our choice of the desired-pole locations, the desired characteristic polynomial is given
by
9ea(2) = (2 = (0.1 +50.2)) (2 ~ (0.1 - j0.2)) = 22 — 0.2z + 0.05.

We know that if a system is controllable, we can place the closed-loop poles at any desired
location via state-feedback control. So assume
u(k) = Kx(k) = [ ki ko ]x(k)

for some state-feedback matrix K. The characteristic polynomial of the system under state-
feedback control can be determined from the denominator of the transfer function, such that

qc(z) = det(zI — (4 + BK))

o (<[4 2] (Lo ][]t w))

=22+ (—ky — 0.9)z + (=k; + 0.08).

Setting gc(z) = ge,(2). we get
—k1 4+ 0.08 = 0.05,

or k£ = 0.03: and
—ky - 0.9 = -0.2,

or k; = —0.7. Therefore.
u(k) =003 -0.7 ] x(k).

Design the necessary additions to the controller assuming that only the output is available.

Solution: When only the output is available, state-feedback control can still be implemented if an

observer is used. Moreover. we know that if a system is reachable, we can place the closed-loop
poles of the observer at any desired location via error-feedback control. So assume

el = L(50) ~y0) = | ] (506) - (k)

for some observer-error gain matrix L, where g is the observer output variable. Assuming that
the observer poles are at 0.1 and 0.1, the desired observer-characteristic polynomial

Go4(2) = (2 = 0.1)(z ~ 0.1) = 22 — 0.2z + 0.01.

The observer-characteristic polynomial go under the error-feedback control can be determined
from the denominator of the transfer function of the observer, such that

do(2) = det (2] — (A + LC))

cae (o[ 0] ([ e o]+ [4] 005 1)

=22+ (=050 — Iy — 0.9)z + (0.531; — 0.5l + 0.08).
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Setting go(2) = go,(2), we get

—0.5l; =1l - 0.9 =-0.2,

and
0.53{; — 0.5l3 + 0.08 = 0.01.

05 -1 ][u] [ o7
053 =05 ||l |~ | 007 |"

and after solving for L = [ i Iy ]T, we obtain

In matrix form, we get

oW = | _\'y | 09 -uer).

where e and ¢ are the error-feedback control and the observer output variables. respectively.

4. Consider a system described by the difference equation

z(k+1) = —z(k) + u(k),

where = and u are the state and the input variables. respectively. Determine the optimal control action
u(k) for £ > 0 that would minimize the cost function

when 2(0) = -1 and 2(3) = 0.

Solution: The Hamiltonian for this cost function and the system is

Hi(2(k), u(k), A* (k + 1)) = %(xz(k) 402 (8)) + AT (k + 1) (=2 (k) + u(k).

where A is the Langrange multiplier. The optimality conditions in terms of the Hamiltonian are

A(k) = 2Hi (2 k), ulk), Ak +1))

=xz(k) — Mk f <k<2,
2(R) (k) =AMk +1) for 0 < k <

o = QHk(z(k), u(k), A(k + 1))

= 4u(k k fi <k<L2
u(k) du(k) + Mk +1) for0< k <

OHy (x(k), u(k), Ak + 1))

= —zx(k fi <k<2
AT 1) z(k) 4+ u(k) for 0 < k <

z(k+1) =

From the above optimality equations, we get

Ak +1) = z(k) - A(k),

and

z(k+1) = (k) + u(k) = —z(k) + (=(1/4)A(k + 1))
= —z(k) - (1/4)(z(k) - A(k)) = =(5/4)z(k) + (1/4)A(K).
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Or, in matrix form

- z(k+1) | [ —(5/4) 1/4 ][ z(k)
Mk+1) | J | Ak) |

Since the boundary conditions z(0) = -1 and z(3)
equation to determine A(0). Since,

[ ~(5/4) 1/4 r_ { —(5/4) 1/4J [ —(5/4) 1/4} _[ 29/16 —(9/16)J
1 -1 - = ’

= 0 are given, we need to solve the above matrix

1 -1 1 -1 —(9/4) 5/4

~5/4) 1/41° [ —~(5/4) 174 17 ~(5/4) 1/4] [ -(181/64) 6564
1 -1 - 1 -1 1 -1 |- 65/16  —(29/16) |

x@3) | _ [ ~6/9) 174 1°[ 2(0) .
A3) | 1 -1 A(0) |
2(3) = —(181/64)2(0) + (65/64)A(0).

0 = —(181/64)(~1) + (65/64)A(0),
or A(0) = —(181/65) = —2.7842.

and

we get

Since u(k) = —(1/49A(k +1) for k = 0. 1, 2 from the optimality condition, we need to determine
A(k) for k=1. 2, 3.

z(1) | —(5/4) 1/4 z(0) _ | 36/65

A1) | 1 -1 AO) || 116/65 |-

2(2) | _ | =66/4) 1/4 ][ z(1) _ | —16/65

A2) | J A1) || ~-16/13 |

z(3) | —(5/4) 1/4 z(2) | 0

A3) | 1 -1 A2) || 64/65 |
From u(k) = —(1/A(k +1) for k = 0, 1, 2, we get

u(0) = —(29/65), u(1) = 4/13, and u(2) = —(16/65).




