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1. The dynamics of a control system are described by the equations
91(2) + 8y1(t) + 11y1(2) + 29a(t) + 2ya(t) = w1 (t) + ua(2),

y1(t) — 92(t) = —u(t) — ua(2),

where u; and uy are the input and y; and y, are the output variables. Obtain a minimal state-space
representation. Show all your work. (30pts)

2. A control system is described by

010 0
et)=[2 1 1 |a@)+ ]| 1 |u@),
001 0

y)=[1 1 1]=(¢),

where u, z, and y are the input, the state, and the output variables, respectively. Obtain its kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.
Clearly mark the portions on the decomposed system. (30pts)

3. A continuous-time linear control system is described by

d:(t):[(l) _;]m(t)-f-[(l)Ju(t),

y@)=[1 1]=z(@),

where u, z, and y are the input, the state, and the output variables, respectively. Design an output
feedback controller for the system, such that the 2% settling time is about 2 seconds, and the maximum
percent-overshoot for a step-input is about 20%. (25pts)

HINT: The 2% settling time ty9, = (4/00), and the maximum percent-overshoot
My, =€ ((/ v 1-(2)n 100%

for a second-order system with no zero and the poles at —o, % jwy = —Cwn £ j1/T — C2wn.
4. A linear control system is described by
. 01 1 -1
s)=| 5 1]a0+[] 2w,

y&)=[-2 -1]at)+[ -1 1]u@),
where u, x, and y are the input, the state, and the output variables, respectively.

(a) Determine all the eigenvalues of the system. (05pts)
(b) Determine all the zeros of the system. (10pts)
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1. The dynamics of a control system are described by the equations

1(2) + 8y1(¢) + 11y1(¢) + 292(t) + 2y2(t) = w1 (2) + ua(t),
y1(t) — 92(t) = =1 () — ua(2),

where u; and uy are the input and y; and y, are the output variables. Obtain a minimal state-space
representation. Show all your work.

Solution: In order to have a state-space representation, we may obtain the transfer matrix and generate
a coprime factorization. To obtain the transfer matrix, we take the laplace transformation of the
system equations under zero-initial conditions.

(s® + 85 4+ 11)Y;(s) + (25 + 2)Ya(s) =sUi(s) + Ua(s),
Yi(s) — sYa(s) = — sUi(s) - Uz(s);

s2+8s+11 2542 Yi(s) | _ s 1 Ui(s) |
1 -5 Ya(s) | | =s -1 Uax(s) |’

-1
Yi(s) | | s°+8s+11 2s5+2 s 1 Ui(s)
Ya(s) | 1 -5 -s -1 Ux(s) |’
where Uy, Us, Y1, and Y; are the laplace transforms of u1, u2, ¥1, and ys, respectively. The above
equation is in the left factorization form, where Y (s) = Do~!(s)No~!(s)U(s), Y = (1 ¥, ]T, and
U= [ U, U, ]T. To obtain a left coprime factorization, we form an augmented matrix from N,

and Do, and perform row operations until we obtain a reduced form. In our case, the augmented
matrix is

or

s 1 s2+8+11 2542

[ Mo [ Do) ] = | . 1 y

Adding the second row to the first row, we get

0 0 s2 +8s+12 s+2

[ M) | Dis) | =

-8 -1 1 -8
Dividing the first row by s + 2, we get

[ Nas) ' Da(s) ] _ 0 0 s+6 1

-8 -1 1 -8
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The last operation resulted in a coprime factorization, since the rank of the above augmented matrix
will not drop for any value of s, and the degree of the determinant of D(s) is the same as the sum
of its highest row degrees. As a result, all we need to do is to realize the left coprime factorization.
First, we decompose D(s) and N (s), such that

D(s) = S,(s)Dy, + V,.(s)Dy,,

and
N(s) = Sr(8)Np, + U,.(s)N,,,

where

sh sh-1

Se(s) = s'2 and ¥,(s) = sh=l 1

are block-diagonal matrices, and I; is the highest degree of the polynomials on the ith row of D(s).
In our case, i =1, I, =1,

,:s OJ [1'0J
Sr(s) = , and ¥,.(s) = .
0|s 01

The decompositions become

D(s)=h+6 1:'=Sr(3)Dhr+‘I’r(s)Dl,=[8,0 [1] 0J+[1,o [6'1}’

1 —s ofs|]|of-1 o1 |[1]o
and
[0 o le [ 0,0 1|0 Fo, 0
N =1 _, -1}=S’(S)N"'+QT(S)M'= o]s || -1]0 ’ oft||of-1|

The controller canonical-form realization is, then, given by
&(t) = (45 — BoDy, D;'C)a(t) + (BN, ~ BIDy, D' Ny, ut)
y(t) = (D, C3)x(t) + (D5 Na,)u(t),

where i
[0 1 0
¢ o 1
0 0
0 1 0
Ag = . )
0 o0 1
0 0 0
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By is the identity matrix with dimension > i ki, and

1 0 ... 0
Cg — 1 0 ... 0
In our case, )
0|0
Al = ,
00 J
BY is the 2 dimensional identity matrix, and
1]0]
|
01 |

BN R R T N THRET]
il CHIHRIE B [ N R |
e=[o 2] [a 0]-[s 23],

w=[o a] [8]-[2 8]

Therefore, one possible state-space representation of the system is given by

&(t) = [ - . ]:z:(t) + [ " 2 ] u(t),

and

v0=|5 J]=0+[] §]uo,

where u, , and y are the input, the state, and the output variables, respectively.

2. A control system is described by
010 0
zt)=2 1 1 |z@t)+ | 1 u(t),
0 01 0

y&)=[1 1 1]z(@),

where u, x, and y are the input, the state, and the output variables, respectively. Obtain its kalman
decomposition that separates the controllable, uncontrollable, observable, and unobservable portions.
Clearly mark the portions on the decomposed system.
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Solution: The kalman decomposition will transform the system, such that

Teo(t) Ao 0+ 0 Teolt) beo
Teo(t) | _ *  Acs o+ * Tep(t) be,s
Zeolt) [T | 0 0 A, 0 zeo(t) | T 0 | %)
Te,5(t) 0 0 * A Te,5(t) 0
and
ZTeo(t)
—_ _ Tc5(t)
y(t)=[cco 0 co5c 0] zen(t) + Du(t),
Ze,0(t)

where the controllable, uncontrollable, observable, and unobservable portions are denoted by the
subscripts ¢, ¢, o, and o, respectively. From the form of the given system, we can observe that
the controllable and uncontrollable portions are already separated. In an nth order system that is
described by

&(t) = Az(t) + Bu(t),

y(t) = Ca(t) + Du(t),
where u, z, and y are the input, the state, and the output variables, respectively; the observability
matrix for n = 3 is given by

¢ C 111
CA

0(C,A) = =|1CA |=]|2 2 2
cﬁn-l CA? 4 4 4

To separate the observable and the unobservable portions, we need to pick the linearly independent
row vectors from the observability matrix. Since. there is only one linearly independent row vector,
[ 111 ] in the observability matrix, the rest of the rows need to be supplied with other vectors
that are linearly independent to the original vector in the transformation matrix. So, we let

111
ST=101 0.
0 01

Therefore, the new system matrices are

and
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After marking the state variables, we get the kalman decomposition.

goolt) | [Aco| 0 | 0 ][ 2eo®)] [ Beo ]
Teo(t) | = * | Aes| * Teo(t) | + | Bes | u(t)

Zes(t) | 0] 0 s | [aeold) | | 0|

(2 0|0 [[eoy] [ 1]
=] 2 |-1 [-1 zeo(t) [+ 1 | ut),

oot et | | 0|

and

Teo(t) Teo(t)
=[] o Jo] [z [ + | o | o ) oy
Te,5(t) Te,5(t)

3. A continuous-time linear control system is described by

:i:(t):[(l) _;]m(t)+[(1)Ju(t),

y&)=[1 1]=(),

where u, , and y are the input, the state, and the output variables, respectively. Design an output
feedback controller for the system, such that the 2% settling time is about 2 seconds, and the maximum
percent-overshoot for a step-input is about 20%.

HINT: The 2% settling time to9, = (4/0,), and the maximum percent-overshoot
- -2
My, = &= (V=) 1000

for a second-order system with no zero and the poles at —0, & jwa = —Cwn £ j/1 = Cw,.

Solution: We determine the desired system closed-loop poles from the system requirements.
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Given Requirements General System Restrictions Specific System Restrictions
¢~ | In(0.2)|
In(0.2))? + (7> ’
M, ~ 20% y (In(0.2))" + (=)
Maximum percent overshoot for or
the unit-step input or ¢ = 0.46;
(VD) oy

since My = e~ (¢/V1=¢Or ap4
¢ = In(My)I/\/ (in(M,))* + (x)*.

t2%a =~ 281
2% settling-time for the or 0o & 2,
unit-step input 4 ~2 since tye, = 4/05.

oo )
From the given requirements, we obtain
O, 2
Wp = — & —— =4.39.
"¢ 0.46

And, the desired closed-loop pole locations are at Pdi; = —00 £ j\/1—-(%w, = -2+ j3.9. The
desired characteristic polynomial ¢, 4 can be obtained from the desired-pole locations, where

eq(8) = (s = (=24 j3.9))(s — (-2 — 53.9)) = s + 45 + 19.21.

The characteristic polynomial g, under state-feedback gain K = [kl ko ], such that the input
u = Kz, can be determined from

qc(s) = det(sI — (A + BK))

=an(o[ V- ([0 ]+ 1m =)

= 5%+ (=ky + 2)z + (~ky — 1).

Setting gc(s) = gc,(s), we get
—-k; —1=19.21,

or k; = —20.21; and
—ko +2 =4,

or ky = —2. Therefore,
K= [ -20.21 -2 ]

However, since only the output, not the state variable, is available, we need to design an observer
and use the observer state variable & instead of the state variable z.

The desired observer-characteristic polynomial g, 4 can be obtained from the desired observer-pole
locations. Since there is no explicit specifications, we may choose the two desired observer-pole
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locations ourselves. Choosing both poles at —10 that is faster than the system poles, we get the
desired observer characteristic polynomial

oy (8) = (s +10)(s + 10) = s + 20s + 100.

The observer-characteristic polynomial ¢, under the observer-error gain L = [ L Iy ]T can be de-
termined from

go(s) = det(sI — (A + LC))

S AEHE (R FYITEY))

=52+ (=l =l +2)s + (=31, ~ I — 1).

Setting go(s) = go,(s), we get
=3l =13 — 1 =100,

and
=l -l +2=20.

Solving the two equations for [; and Iy, we get

415
L= [ 23.5 ] '

Therefore,
u(t) = —20.21 -2 ] &(t) for t > 0,

where
4(t) = AB(t) + Bu(t) + [ e J (Ca(t) - y(t)),

and A, B, and C are the state, the input, and the output matrices of the system, respectively.

4. A linear control system is described by
. 01 1 -1

y®)=[-2 -1]z®)+[ -1 1]u@),
where u, x, and y are the input, the state, and the output variables, respectively.
(a) Determine all the eigenvalues of the system.
Solution: The eigenvalues of a linear control system described by
x(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t),
is determined from the characteristic equation
det(AI — 4) = 0.
In our case,

A -1
-2 A-1

So, the eigenvalues are A\; = —1 and A = 2.

det[ J=,\(A—1)—2=A2—A~2=(A+1)(,\—2)=o.
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(b) Determine all the zeros of the system.

Solution: The zeros of a linear control system described by
(t) = Az(t) + Bu(t)
y(t) = Ca(t) + Du(t),

is determined from the values of s that drop the rank of the matrix

sI-A -B
C D |’
In our case,
s —1 -1 1 s —1 -1
rank sI—-A4 -B =rank [ =2 s—1|-1 1 | =rank| -2 s—1 -1 ,
¢ D -2 -1 -1

2 -1 -1 1

since the last two columns of the 3x4 matrix are linearly dependent. All the values of s that
make the determinant of the 3x3 matrix zero are the zeros of the system.

s -1 -1
det | =2 s—1 -1 | =-s*~2s=—5(s+2).
-2 -1 -1

So, the zeros are s1 = —2 and s = 0.



