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1. Obtain the extremal of J and analyze the result.

(a) 1
J(z) = / sidt.
0
(10pts)
(b) 1
J(z) =/ tzd dt.
0
(10pts)
2. Find an extremal of the functional
4
J(z) = / (#-1)*z+1)?) &t
0
with z(0) = 0, and z(4) = 2, that has just one corner. (30pts)
3. Consider the cost function .
J(z1,z2,u) = / (20:1:12 + 5292 + u2) dt,
0
and a continuous-time linear control-system described by
£1(t) = z2(2)
Z2(t) = —4xy (t) - 4z4(t) + u(t),
where u is the control variable, and z; and z5 are the state variables.
(a) Obtain the optimal feedback control that minimizes the cost function J. (30pts)
(b) Determine the optimal cost J* for an arbitrary initial state. (10pts)

4. Find the minimum-time control that will transfer an arbitrary initial state to the origin for the control
system described by

.’i:l (t) = —T (t) - 'U,(t)
Z2(t) = —2z2(t) — 2u(t),

where u is the control variable, and x; and z; are the state variables, provided that |u(t)| < 1 for ¢ > 0.
(30pts)
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1. Obtain the extremal of J and analyze the result.

(a)
J(z) = /lxi:dt.
0

1 1
J=/ O(z,z,t)dt =/ zz dt,
0 0

where the end conditions are unspecified. The Euler-Lagrange equation gives

Solution: Given the functional

d, - dtd’i—O,
d
#) - 2@ =0,
or
0=0.

In other words, the Euler-Lagrange equation is always satisfied; and as long as the end conditions
are satisfied, all trajectories are extremal.

This result is also justified from a further analysis of J, where
1 1 z(1)
. dz z=z(1) 2 2
Jz/a:xdt:/x—dt:/ rdz = [22/2]° = (z°(1) — z°(0)) /2,
0 o dt 2(0) (/2 ety = )

which only depends on the end conditions.
1
J(z) =/ trz dt.
0

Solution: Given the functional

1 1
J=/ O(z,z,t)dt =/ trt dt,
0 0

where the end conditions are unspecified. The Euler-Lagrange equation gives
d
. d
(tz) - a—;(tm) =0,
te — (z +tz) =0,
or
z=0for0<t<1.

In other words, the optimal trajectory is z(t) =0 for 0 < t < 1, if the end conditions are such
that £(0) = z(1) = 0; otherwise there is no extremal.
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2. Find an extremal of the functional

4
J(z) = /0 (2 - 1)%(z + 1)) dt

with z(0) = 0, and z(4) = 2, that has just one corner.

Solution: Given the cost function

2 4
— : _ . 2.,1': 2
J_/O q)(x,x,t)dt_/o (& - 1)*(z + 1)?) dt,

where z(0) = 0, and z(4) = 2. The Euler-Lagrange’s equation gives

d

b, - —
Toodt

@i‘:O’

(0) - d%—(z(fg? -1)2%) =0,
4i(3* - 1) = 0,
(i’ -1) =g,

or
.3 . _
P —z—-¢c=0

for a constant c. Solving the above polynomial equation for #, we get £ = a, or z(t) = at + b for
some constants a and b.

In order for the extremal to have a corner, we need to have

2(t) = ait+by, iftef0,t);
- a2t+b2, lft € [t134]1

where a; # ay; since a; = a3 implies z(ti- = z(ty + and no corner. Substituting the end conditions,
we get

z(0) =0=>a1(0) + b =0, or by = 0;
z(4) =2 = ay(4) + by =2, or by = —4ay + 2.

As a result,
2(t) = art, ?ft € [0,¢1];
a(t —4)+2, ifte€ [ty,4].
Next. we need to consider the Weierstrass-Erdmann’s corner conditions at ¢ = t;. The first corner
condition is

and since
®; = 4i(z% — 1),

we get
4a1(ar® - 1) = daz(ax® - 1). (2.1)
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The second corner condition is

[@ — 29, =[® — 2P|

=t _ t=t, +?

and since
D —i®; = (2% — 1)? — #4i(2? - 1) = — (&% — 1)(332 + 1),

we get
—(a1® = 1)(3a1% + 1) = —(az® - 1)(3a2 + 1). (2.2)

On possible solution to Equations (2.1) and (2.2) is when each side is zero. When each side of the
Equation (2.1) is zero, we get a;, a2 € {0,%1}. Similarly, when each side of the Equation (2.2) is
zero, we get a1, az € {£1}. As a result, two possible choices that would satisfy both of the corner
conditions are a; = *+1 and a3 = F1. In other words,

_ ], ifte [O,tl];
2(t) = {—t +6, ifte[ty,4]

or ¢ 0.4
-, if t € [0.4];
2(t) = {t—2, if ¢ € [t1,4].

We can determine ¢, from the continuity of z at ¢ = ¢;. For the first case, we get t; = —t; + 6 or

t1 = 3; and for the second case, we get —t; = t; — 2 or ¢; = 1. Therefore, one possible optimal
trajectory with one corner is
if ¢ :
x(t):{t’ if t € [0, 3];

—t+6, ifte[3,4].

Another possible trajectory is

_[—t, ifte]o,
x(t)—{t—2, ift € L.

l;

1
4]

3. Consider the cost function

o0
J(z1,22,u) = / (203:12 + 5252 + u2) dt,
0

and a continuous-time linear control-system described by

z1(t) = z2(t)
To(t) = —4z1(t) — 4zo(t) + u(t),

where u is the control variable, and z; and z» are the state variables.

(a) Obtain the optimal feedback control that minimizes the cost function J.

Solution: Since the infinite-time cost function is quadratic in the state and the input variables,
the optimal control can be expressed in state-feedback form, such that

u(t) = —R71BT Pz(t),

where R is from the cost function

J = /0 - E(xT(t)Qx(t) + uT(t)Ru(t)) dt,
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and P is the solution to the algebraic riccati equation
ATP+PA-PBR'BTP+Q=0
for the control system described by
x(t) = Ax(t) + Bu(t).
In our case, we have
x(t) = [ D ] x(t) + [ ) ] u(t),
and

®1/( r 40 0
J_/O 5 (x (t)[ 0 10 ]x(t)+u(t)(2)u(t)) dt.
In other words,
0 1 0 40 O
[0 m=[0] ee]® 5] manes
Since P is symmetric, let

P=[P1 Pz]'
P2 p3

Substituting all these matrices into the algebraic riccati equation, we get

ATP+ PA-PBR'BTP+Q=0,
T
[ 0 1] [m P2]+[P1 Pz][ 0 1]
-4 —4 P2 p3 p2 p3 | [ -4 —4
nelR]er 3] [ n]e [0 6]
P2 P3 1 1 P2 P3 0 10

[0 —4J[P1 P2J+[P1 Pz][ 0 1]
1 —4 P2 P3 P2 P3 -4 —4

_[m Pz][o 0 le p2}+[40 0]=
P2 D3 0 1/2 || p2 p3 0 10
We get
—4py — 4pa — (1/2)p2® +40 =0,
—4ps +p1 — 4p2 — (1/2)p2p3 + 0 =0,
and

p2 —4p3 +p2 — 4p3 — (1/2)p32+10=0

00
00

00
00

4/8

|

|

from the (1,1), (1,2) (or (2,1)), and (2,2) terms of the matrix equation, respectively. From the

equation in the (1,1) term, we have
p2® + 16p, — 80 =0,
or pp = —(16/2) + /(16/2)Z — (1)(—80) = —8 + 12.
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* Assuming p2 = —8 — 12 = -20, the equation in the (2,2) term gives

P32 + 16p3 — 4dpp — 20 = 0,

p3Z + 16p3 + 60 = 0,

or p3 = —(16/2) + 1/(16/2)% — (1)(60) = —8 + 2. Since P needs to be non-negative definite
implying that the diagonal elements of P have to be positive, neither p; = —6 nor p3 = —10
is acceptable. In other words, p, = —20 assumption doesn’t give a non-negative definite
matrix.

Assuming p; = —-8 4 12 = 4, the equation in the (2,2) term gives

p3> + 16p3 — 4ps — 20 = 0,

p32 + 16p3 — 36 = 0,

or p3 = —(16/2)£+/(16/2)2 — (1)(—36) = —8+10. Since P needs to be non-negative definite
implying that the diagonal elements of P have to be positive, p; = —18 is not acceptable,
and p3 = 2. Finally, from the equation in the (1,2) term, we get

p1 = 4py + (1/2)paps + 4ps = 28.
As a result, we get
o [ 28 4 ]

4 2

that is positive definite and unique.

Therefore, the optimal control is

or

u(t) = —R'BTPx(t) = —(2) ' [0 1] [ = ]x(t),

u(t)=-1[2 1]x(t)=-]2 1][?(0] for t > 0.

(b) Determine the optimal cost J* for an arbitrary initial state.

Solution: For the infinite-time quadratic cost function with the state-feedback control, the optimal
cost

J' = %xT(O)Px(O),

where x is the state variable, and P is the solution to the algebraic riccati equation. In our case,

28 4
p=[ 73]

and for x(0) = [ z1(0) =z2(0) ]T, the optimal cost

J* = 14212(0) + 421 (0)z2(0) + z22(0).
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4. Find the minimum-time control that will transfer an arbitrary initial state to the origin for the control
system described by

£1(t) = —z1(¢) — u(?)
Ea(t) = —2x2(t) — 2u(t),

where u is the control variable, and z; and z; are the state variables, provided that lu(t)] <1 fort>0.

Solution: The Hamiltonian for the minimum-time control and the given system is

H(t,u,x,A) = 1+ AT(Ax + Bu) = 1 + A (=21 — u) + Ag(—2z2 — 2u),
where A = [ A1 Ao ]T is the langrange multiplier, and the system is described by
x(t) = Ax(t) + Bu(t).

Here, u and x are the input and the state variables, respectively. The optimality conditions in terms
of the Hamiltonian are

5(=H)\; :i'l = - —u,
To = =29 — 2u;
A=—Hy; A =—(=X1)=\

Ay = —(=2Xg) = 2)y;

1+ Al(=2] —u”) + A3(=2x3 — 2u*) < 1+ Aj(—z] — u) + A5(—2z5 — 2u),
or — (Al +2X\)u* < —(A] + 2\,

where ()* designates the optimal values. From the last optimality condition, we get

u* = sgn(A; + 2\z).

In order to determine the optimal trajectory, we need to analyze the response when u = +1. For
u= %1, we get ‘

1(t) = -1 F1

Bo(t) = —2m2(t) F 2,

or
z1(t) =cre t ¥ 1
z2(t) = coe” 2 F 2,

for ¢ > 0, and for some constants ¢; and c;. To get a state trajectory, we eliminate the time variable

by using the first equation, so that
et=(zx1£1)/c1,

or
e = (21 £1)%/c, 2
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Substituting the above expression into the second equation, we get
2 2
22 = (c2/cr®)(m1 £ 1) Fl=cs(z1 £1)° F 1.

Therefore, the state trajectories are parabolas with vertexes at (£1,+1); and since z;, z2 — F1 as
t — oo, the direction of flow is toward these vertexes as shown in the following figures.

A\

1 \\ TE}.

T
NS L
/1N %

(a) u = —1 case. (b) u =1 case.

T2

Since our destination is the origin, the last switch is to be to the curves that go through the origin,
specifically

Ty = — (:vl - 1)2 +1, when u = —1;
and
zy =(z1 + 1)2 —1, when u =1.

To determine the control signal for each region, we choose the trajectories that intersect the above
curves with different values of u as shown in the following figures. The first figure shows the region

in the state trajectory, where the optimal control starts with « = —1; and when To = (27 + 1)2 -1,
that is shown by the thicker line in the first figure, the control is switched to u = 1. The second
figure shows the region, where the optimal control starts with u = 1; and when z5 = —(z1-1)2+1,

that is shown by the thicker line in the second figure, the control is switched to u = —1.
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x2 x2

(a) u=—1to u =1 case. (b) u=1 to u= —1 case.

The minimum-time control strategy terminating at the origin as a function of the state variables can
be expressed as
-1, ifz;<O0and 2o > —(z1 — 1)2 +1;
-1, ifz; >0and z2 > (z; +1)% - 1;
u=¢ 0, ifz; =z =0;
1, ifz;<0andzy < —(z;—1)2+1;
1, ifzy>0andzy < (z1+1)2-1.



