Copyright © 2004 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Obtain the extremal of J and analyze the result.

(a)
$$J(x) = \int_0^1 x \dot{x} \, \mathrm{d}t.$$
 (10pts)
$$J(x) = \int_0^1 t x \dot{x} \, \mathrm{d}t.$$
 (10pts)

2. Find an extremal of the functional

$$J(x) = \int_0^4 \left((\dot{x} - 1)^2 (\dot{x} + 1)^2 \right) dt$$

with x(0) = 0, and x(4) = 2, that has just one corner.

(30pts)

3. Consider the cost function

$$J(x_1, x_2, u) = \int_0^\infty \left(20x_1^2 + 5x_2^2 + u^2\right) dt,$$

and a continuous-time linear control-system described by

$$\dot{x}_1(t) = x_2(t)$$

 $\dot{x}_2(t) = -4x_1(t) - 4x_2(t) + u(t),$

where u is the control variable, and x_1 and x_2 are the state variables.

- (a) Obtain the optimal feedback control that minimizes the cost function J. (30pts)
- (b) Determine the optimal cost J^* for an arbitrary initial state. (10pts)
- 4. Find the minimum-time control that will transfer an arbitrary initial state to the origin for the control system described by

$$\dot{x}_1(t) = -x_1(t) - u(t)$$
$$\dot{x}_2(t) = -2x_2(t) - 2u(t),$$

where u is the control variable, and x_1 and x_2 are the state variables, provided that $|u(t)| \le 1$ for $t \ge 0$.

(30pts)

Copyright © 2004 by Levent Acar. All rights reserved. No parts of this document may be reproduced, stored in a retrieval system, or transmitted in any form or by any means without the written permission of the copyright holder(s).

1. Obtain the extremal of J and analyze the result.

(a)

$$J(x) = \int_0^1 x \dot{x} \, \mathrm{d}t.$$

Solution: Given the functional

$$J = \int_0^1 \Phi(x, \dot{x}, t) dt = \int_0^1 x \dot{x} dt,$$

where the end conditions are unspecified. The Euler-Lagrange equation gives

$$\Phi_x - \frac{\mathrm{d}}{\mathrm{d}t}\Phi_{\dot{x}} = 0,$$

$$(\dot{x}) - \frac{\mathrm{d}}{\mathrm{d}t}(x) = 0,$$

or

$$0 = 0$$
.

In other words, the Euler-Lagrange equation is always satisfied; and as long as the end conditions are satisfied, all trajectories are extremal.

This result is also justified from a further analysis of J, where

$$J = \int_0^1 x \dot{x} \, dt = \int_0^1 x \frac{dx}{dt} \, dt = \int_{x(0)}^{x(1)} x \, dx = \left[x^2 / 2 \right]_{x=x(0)}^{x=x(1)} = \left(x^2 (1) - x^2 (0) \right) / 2,$$

which only depends on the end conditions.

(b)

$$J(x) = \int_0^1 tx \dot{x} \, \mathrm{d}t.$$

Solution: Given the functional

$$J = \int_0^1 \Phi(x, \dot{x}, t) dt = \int_0^1 t x \dot{x} dt,$$

where the end conditions are unspecified. The Euler-Lagrange equation gives

$$\Phi_x - \frac{\mathrm{d}}{\mathrm{d}t}\Phi_{\dot{x}} = 0,$$

$$(t\dot{x}) - \frac{\mathrm{d}}{\mathrm{d}t}(tx) = 0,$$

$$t\dot{x}-(x+t\dot{x})=0,$$

or

$$x = 0$$
 for $0 < t < 1$.

In other words, the optimal trajectory is x(t) = 0 for $0 \le t \le 1$, if the end conditions are such that x(0) = x(1) = 0; otherwise there is no extremal.

2. Find an extremal of the functional

$$J(x) = \int_0^4 ((\dot{x} - 1)^2 (\dot{x} + 1)^2) dt$$

with x(0) = 0, and x(4) = 2, that has just one corner.

Solution: Given the cost function

$$J = \int_0^2 \Phi(x, \dot{x}, t) dt = \int_0^4 ((\dot{x} - 1)^2 (\dot{x} + 1)^2) dt,$$

where x(0) = 0, and x(4) = 2. The Euler-Lagrange's equation gives

$$\Phi_x - \frac{d}{dt}\Phi_{\dot{x}} = 0,$$

$$(0) - \frac{d}{dt}(2(\dot{x}^2 - 1)2\dot{x}) = 0,$$

$$4\dot{x}(\dot{x}^2 - 1) = 0,$$

$$\dot{x}(\dot{x}^2 - 1) = c,$$

or

$$\dot{x}^3 - \dot{x} - c = 0$$

for a constant c. Solving the above polynomial equation for \dot{x} , we get $\dot{x}=a$, or x(t)=at+b for some constants a and b.

In order for the extremal to have a corner, we need to have

$$x(t) = \begin{cases} a_1 t + b_1, & \text{if } t \in [0, t_1]; \\ a_2 t + b_2, & \text{if } t \in [t_1, 4]; \end{cases}$$

where $a_1 \neq a_2$; since $a_1 = a_2$ implies $\dot{x}(t_{1-} = \dot{x}(t_1 + \text{ and no corner. Substituting the end conditions, we get$

$$x(0) = 0 \Longrightarrow a_1(0) + b_1 = 0$$
, or $b_1 = 0$;
 $x(4) = 2 \Longrightarrow a_2(4) + b_2 = 2$, or $b_2 = -4a_2 + 2$.

As a result,

$$x(t) = \begin{cases} a_1 t, & \text{if } t \in [0, t_1]; \\ a_2(t-4) + 2, & \text{if } t \in [t_1, 4]. \end{cases}$$

Next, we need to consider the Weierstrass-Erdmann's corner conditions at $t=t_1$. The first corner condition is

$$[\Phi_{\dot{x}}]_{t=t_{1-}} = [\Phi_{\dot{x}}]_{t=t_{1+}};$$

and since

$$\Phi_{\dot{x}} = 4\dot{x}(\dot{x}^2 - 1),$$

we get

$$4a_1(a_1^2 - 1) = 4a_2(a_2^2 - 1). (2.1)$$

The second corner condition is

$$[\Phi - \dot{x}\Phi_{\dot{x}}]_{t=t_{1-}} = [\Phi - \dot{x}\Phi_{\dot{x}}]_{t=t_{1-}}$$

and since

$$\Phi - \dot{x}\Phi_{\dot{x}} = (\dot{x}^2 - 1)^2 - \dot{x}4\dot{x}(\dot{x}^2 - 1) = -(\dot{x}^2 - 1)(3\dot{x}^2 + 1),$$

we get

$$-(a_1^2 - 1)(3a_1^2 + 1) = -(a_2^2 - 1)(3a_2^2 + 1). (2.2)$$

On possible solution to Equations (2.1) and (2.2) is when each side is zero. When each side of the Equation (2.1) is zero, we get $a_1, a_2 \in \{0, \pm 1\}$. Similarly, when each side of the Equation (2.2) is zero, we get $a_1, a_2 \in \{\pm 1\}$. As a result, two possible choices that would satisfy both of the corner conditions are $a_1 = \pm 1$ and $a_2 = \mp 1$. In other words,

$$x(t) = \begin{cases} t, & \text{if } t \in [0, t_1]; \\ -t + 6, & \text{if } t \in [t_1, 4]; \end{cases}$$

or

$$x(t) = \begin{cases} -t, & \text{if } t \in [0, t_1]; \\ t - 2, & \text{if } t \in [t_1, 4]. \end{cases}$$

We can determine t_1 from the continuity of x at $t=t_1$. For the first case, we get $t_1=-t_1+6$ or $t_1=3$; and for the second case, we get $-t_1=t_1-2$ or $t_1=1$. Therefore, one possible optimal trajectory with one corner is

$$x(t) = \begin{cases} t, & \text{if } t \in [0, 3]; \\ -t + 6, & \text{if } t \in [3, 4]. \end{cases}$$

Another possible trajectory is

$$x(t) = \begin{cases} -t, & \text{if } t \in [0, 1]; \\ t - 2, & \text{if } t \in [1, 4]. \end{cases}$$

3. Consider the cost function

$$J(x_1, x_2, u) = \int_0^\infty \left(20x_1^2 + 5x_2^2 + u^2\right) \, \mathrm{d}t,$$

and a continuous-time linear control-system described by

$$\dot{x}_1(t) = x_2(t)
\dot{x}_2(t) = -4x_1(t) - 4x_2(t) + u(t),$$

where u is the control variable, and x_1 and x_2 are the state variables.

(a) Obtain the optimal feedback control that minimizes the cost function J.

Solution: Since the infinite-time cost function is quadratic in the state and the input variables, the optimal control can be expressed in state-feedback form, such that

$$u(t) = -R^{-1}B^T P x(t),$$

where R is from the cost function

$$J = \int_0^\infty \frac{1}{2} \left(\mathbf{x}^T(t) Q \mathbf{x}(t) + \mathbf{u}^T(t) R \mathbf{u}(t) \right) dt,$$

and P is the solution to the algebraic riccati equation

$$A^T P + PA - PBR^{-1}B^T P + Q = 0$$

for the control system described by

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t).$$

In our case, we have

$$\dot{\mathbf{x}}(t) = \left[egin{array}{cc} 0 & 1 \ -4 & -4 \end{array}
ight] \mathbf{x}(t) + \left[egin{array}{cc} 0 \ 1 \end{array}
ight] u(t),$$

and

$$J = \int_0^\infty \frac{1}{2} \left(\mathbf{x}^T(t) \begin{bmatrix} 40 & 0 \\ 0 & 10 \end{bmatrix} \mathbf{x}(t) + u(t) (2) u(t) \right) dt.$$

In other words,

$$A = \left[\begin{array}{cc} 0 & 1 \\ -4 & -4 \end{array} \right], \qquad B = \left[\begin{array}{cc} 0 \\ 1 \end{array} \right], \qquad Q = \left[\begin{array}{cc} 40 & 0 \\ 0 & 10 \end{array} \right], \text{ and } R = 2.$$

Since P is symmetric, let

$$P = \left[\begin{array}{cc} p_1 & p_2 \\ p_2 & p_3 \end{array} \right].$$

Substituting all these matrices into the algebraic riccati equation, we get

$$A^T P + PA - PBR^{-1}B^T P + Q = 0,$$

$$\begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}^{T} \begin{bmatrix} p_{1} & p_{2} \\ p_{2} & p_{3} \end{bmatrix} + \begin{bmatrix} p_{1} & p_{2} \\ p_{2} & p_{3} \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}$$
$$- \begin{bmatrix} p_{1} & p_{2} \\ p_{2} & p_{3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} (2)^{-1} \begin{bmatrix} 0 \\ 1 \end{bmatrix}^{T} \begin{bmatrix} p_{1} & p_{2} \\ p_{2} & p_{3} \end{bmatrix} + \begin{bmatrix} 40 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

$$\begin{bmatrix} 0 & -4 \\ 1 & -4 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} + \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}$$
$$- \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & 1/2 \end{bmatrix} \begin{bmatrix} p_1 & p_2 \\ p_2 & p_3 \end{bmatrix} + \begin{bmatrix} 40 & 0 \\ 0 & 10 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix},$$

We get

$$-4p_2 - 4p_2 - (1/2)p_2^2 + 40 = 0,$$

$$-4p_3 + p_1 - 4p_2 - (1/2)p_2p_3 + 0 = 0,$$

and

$$p_2 - 4p_3 + p_2 - 4p_3 - (1/2)p_3^2 + 10 = 0$$

from the (1,1), (1,2) (or (2,1)), and (2,2) terms of the matrix equation, respectively. From the equation in the (1,1) term, we have

$$p_2^2 + 16p_2 - 80 = 0,$$

or
$$p_2 = -(16/2) \pm \sqrt{(16/2)^2 - (1)(-80)} = -8 \pm 12$$
.

• Assuming $p_2 = -8 - 12 = -20$, the equation in the (2,2) term gives

$$p_3^2 + 16p_3 - 4p_2 - 20 = 0,$$

$$p_3^2 + 16p_3 + 60 = 0,$$

or $p_3 = -(16/2) \pm \sqrt{(16/2)^2 - (1)(60)} = -8 \pm 2$. Since P needs to be non-negative definite implying that the diagonal elements of P have to be positive, neither $p_3 = -6$ nor $p_3 = -10$ is acceptable. In other words, $p_2 = -20$ assumption doesn't give a non-negative definite matrix.

• Assuming $p_2 = -8 + 12 = 4$, the equation in the (2, 2) term gives

$$p_3^2 + 16p_3 - 4p_2 - 20 = 0,$$

$$p_3^2 + 16p_3 - 36 = 0,$$

or $p_3 = -(16/2) \pm \sqrt{(16/2)^2 - (1)(-36)} = -8 \pm 10$. Since P needs to be non-negative definite implying that the diagonal elements of P have to be positive, $p_3 = -18$ is not acceptable, and $p_3 = 2$. Finally, from the equation in the (1,2) term, we get

$$p_1 = 4p_2 + (1/2)p_2p_3 + 4p_3 = 28.$$

As a result, we get

$$P = \left[\begin{array}{cc} 28 & 4 \\ 4 & 2 \end{array} \right]$$

that is positive definite and unique.

Therefore, the optimal control is

$$u(t) = -R^{-1}B^{T}P\mathbf{x}(t) = -(2)^{-1}\begin{bmatrix} 0 & 1 \end{bmatrix}\begin{bmatrix} 28 & 4 \\ 4 & 2 \end{bmatrix}\mathbf{x}(t),$$

or

$$u(t) = -\begin{bmatrix} 2 & 1 \end{bmatrix} \mathbf{x}(t) = -\begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix} \text{ for } t \ge 0.$$

(b) Determine the optimal cost J^* for an arbitrary initial state.

Solution: For the infinite-time quadratic cost function with the state-feedback control, the optimal cost

$$J^* = \frac{1}{2}\mathbf{x}^T(0)P\mathbf{x}(0),$$

where x is the state variable, and P is the solution to the algebraic riccati equation. In our case,

$$P = \left[\begin{array}{cc} 28 & 4 \\ 4 & 2 \end{array} \right];$$

and for $\mathbf{x}(0) = \begin{bmatrix} x_1(0) & x_2(0) \end{bmatrix}^T$, the optimal cost

$$J^* = 14x_1^2(0) + 4x_1(0)x_2(0) + x_2^2(0).$$

4. Find the minimum-time control that will transfer an arbitrary initial state to the origin for the control system described by

$$\dot{x}_1(t) = -x_1(t) - u(t)$$

$$\dot{x}_2(t) = -2x_2(t) - 2u(t),$$

where u is the control variable, and x_1 and x_2 are the state variables, provided that $|u(t)| \leq 1$ for $t \geq 0$.

Solution: The Hamiltonian for the minimum-time control and the given system is

$$H(t, \mathbf{u}, \mathbf{x}, \boldsymbol{\lambda}) = 1 + \boldsymbol{\lambda}^T (A\mathbf{x} + B\mathbf{u}) = 1 + \lambda_1 (-x_1 - u) + \lambda_2 (-2x_2 - 2u),$$

where $\boldsymbol{\lambda} = \left[\begin{array}{cc} \lambda_1 & \lambda_2 \end{array}\right]^T$ is the langrange multiplier, and the system is described by

$$\dot{\mathbf{x}}(t) = A\mathbf{x}(t) + B\mathbf{u}(t).$$

Here, \mathbf{u} and \mathbf{x} are the input and the state variables, respectively. The optimality conditions in terms of the Hamiltonian are

$$\dot{\mathbf{x}} = H_{\lambda}; \quad \dot{x}_1 = -x_1 - u,$$

 $\dot{x}_2 = -2x_2 - 2u;$

$$\dot{\lambda} = -H_{\mathbf{x}}; \quad \dot{\lambda}_1 = -(-\lambda_1) = \lambda,$$

$$\dot{\lambda}_2 = -(-2\lambda_2) = 2\lambda_2;$$

and

$$\left[H \right]_{\substack{u=u^* \\ \lambda = \lambda^* \\ \lambda = \lambda^*}} \leq \left[H \right]_{\substack{x=x^* \\ \lambda = \lambda^*}}; \quad 1 + \lambda_1^*(-x_1^* - u^*) + \lambda_2^*(-2x_2^* - 2u^*) \leq 1 + \lambda_1^*(-x_1^* - u) + \lambda_2^*(-2x_2^* - 2u),$$
 or
$$-(\lambda_1^* + 2\lambda_2^*)u^* \leq -(\lambda_1^* + 2\lambda_2^*)u,$$

where (·)* designates the optimal values. From the last optimality condition, we get

$$u^* = \operatorname{sgn}(\lambda_1 + 2\lambda_2).$$

In order to determine the optimal trajectory, we need to analyze the response when $u = \pm 1$. For $u = \pm 1$, we get

$$\dot{x}_1(t) = -x_1 \mp 1$$

 $\dot{x}_2(t) = -2x_2(t) \mp 2$

or

$$x_1(t) = c_1 e^{-t} \mp 1$$

 $x_2(t) = c_2 e^{-2t} \mp 2$

for $t \ge 0$, and for some constants c_1 and c_2 . To get a state trajectory, we eliminate the time variable by using the first equation, so that

$$e^{-t} = (x_1 \pm 1)/c_1,$$

or

$$e^{-2t} = (x_1 \pm 1)^2 / c_1^2$$

Substituting the above expression into the second equation, we get

$$x_2 = (c_2/c_1^2)(x_1 \pm 1)^2 \mp 1 = c_3(x_1 \pm 1)^2 \mp 1.$$

Therefore, the state trajectories are parabolas with vertexes at $(\pm 1, \pm 1)$; and since $x_1, x_2 \to \mp 1$ as $t \to \infty$, the direction of flow is toward these vertexes as shown in the following figures.

(b) u = 1 case

Since our destination is the origin, the last switch is to be to the curves that go through the origin, specifically

$$x_2 = -(x_1 - 1)^2 + 1$$
, when $u = -1$;

and

$$x_2 = (x_1 + 1)^2 - 1$$
, when $u = 1$.

To determine the control signal for each region, we choose the trajectories that intersect the above curves with different values of u as shown in the following figures. The first figure shows the region in the state trajectory, where the optimal control starts with u = -1; and when $x_2 = (x_1 + 1)^2 - 1$, that is shown by the thicker line in the first figure, the control is switched to u = 1. The second figure shows the region, where the optimal control starts with u = 1; and when $x_2 = -(x_1 - 1)^2 + 1$, that is shown by the thicker line in the second figure, the control is switched to u = -1.

(a) u = -1 to u = 1 case.

(b) u = 1 to u = -1 case.

The minimum-time control strategy terminating at the origin as a function of the state variables can be expressed as

$$u = \begin{cases} -1, & \text{if } x_1 < 0 \text{ and } x_2 \ge -(x_1 - 1)^2 + 1; \\ -1, & \text{if } x_1 \ge 0 \text{ and } x_2 > (x_1 + 1)^2 - 1; \\ 0, & \text{if } x_1 = x_2 = 0; \\ 1, & \text{if } x_1 \le 0 \text{ and } x_2 < -(x_1 - 1)^2 + 1; \\ 1, & \text{if } x_1 > 0 \text{ and } x_2 \le (x_1 + 1)^2 - 1. \end{cases}$$