Anticipations of Calculus - Archimedes

> Let $A B C$ be a segment of a parabola bounded by the straight line $A C$ and the parabola $A B C$, and let D be the middle point of AC. Draw the straight line DBE parallel to the axis of the parabola and join $A B, B C$. Then shall the segment $A B C$ be $\frac{4}{3}$ of the triangle $A B C$.
> Proposition 1 from the Method of Archimedes.

The greatest mathematician of antiquity was Archimedes of Syracuse, who lived in the third century B.C. His work on areas of certain curvilinear plane figures and on the areas and volumes of certain curved surfaces used methods that came close to modern integration. One of the characteristics of the ancient Greek mathematicians is that they published their theormes as finished masterpieces, with no hint of the method by which they were evolved. While this makes for beautiful mathematics, it precludes much insight into their methods of discovery. An exception to this state of affairs is Archimedes' Method, a work addressed to his friend Eratosthenes, which was known only by references to it until its rediscovery in 1906 in Constantinople by the German mathematical historian J. L. Heiberg. In the Method, Archimedes describes how he investigated certain theorems and became convinced of their truth, but he was careful to point out that these investigations did not constitute rigorous proofs of the theorems. In his own (translated) words: "Now the fact here stated is not actually demonstrated by the argument used; but that argument has given a sort of indication that the conclusion is true. Seeing then that the theorem is not demonstrated, but at the same time suspecting that the conclusion is true, we shall have recourse to the geometrical demonstartion which I myself discovered and have already published." This section will give both Archimedes' investigations, from the Method, and the rigorous proof, from his Quadrature of the Parabola, of the proposition above. The arguments given below are from T. L. Heath's The Works of Archimdes, which is a translation "edited in modern notation".

Proposition 1 from the Method is stated at the beginning of this section, and the following investigation refers to Figure 1.

From A draw $A K F$ parallel to $D E$, and let the tangent to the parabola at C meet $D B E$ in E and $A K F$ in F. Produce $C B$ to meet $A F$ in K, and again produce $C K$ to H, making $K H$ equal to $C K$.

Figure 1:
Consider $C H$ as the bar of a balance, K being its middle point.
Let $M O$ be any straight line parallel to $E D$, and let it meet $C F, C K$, $A C$ in M, N, O and the curve in P.
Now, since $C E$ is a tangent to the parabola and $C D$ the semi-ordinate,

$$
E B=B D
$$

"for this is proved in the Elements (of Conics)." (by Aristaeus \& Euclid)
Since $F A, M O$, are parallel to $E D$, it follows that

$$
F K=K A, M N=N O
$$

Now, by that property of the parabola, "proved in a lemma,"

$$
\begin{aligned}
M O: O P & =C A: A O \quad \text { (Cf. Quadrature of the Parabola, Prop. 5) } \\
& =C K: K N \quad \text { (Euclid, VI. 2) } \\
& =H K: K N .
\end{aligned}
$$

Take a straight line $T G$ equal to $O P$, and place it with its centre of gravity at H, so that $T H=H G$; then, since N is the centre of gravity
of the straight line $M O$, and $M O: T G=H K: K N$, it follows that $T G$ at H and $M O$ at N will be in equilibrium about K. ($O n$ the Equilibrium of Planes, I. 6, 7)

Similarly, all other straight lines parallel to $D E$ and meeting the arc of the parabola, (1) the portion intercepted between $F C, A C$ with its middle point on $K C$ and (2) a length equal to the intercept between the curve and $A C$ placed with its centre of gravity at H will be in equilibrium about K.

Therefore K is the centre of gravity of the whole system consisting (1) of all the straight lines as $M O$ intercepted between $F C, A C$ and placed as they actually are in the figure and (2) of all the straight lines placed at H equal to the straight lines as $P O$ intercepted between the curve and $A C$.

And, since the triangle $C F A$ is made up of all the parallel lines like $M O$, and the segment $C B A$ is made up of all the straight lines like $P O$ within the curve, it follows that the triangle, place where it is in the figure, is in equilibrium about K with the segment $C B A$ placed with its centre of gravity at H.

Divide $K C$ at W so that $C K=3 K W$; then W is the centre of gravity of the triangle $A C F$; "for this is proved in the books on equilibrium" (Cf. On the Equilibrium of Planes, I. 5). Therefore

$$
\triangle A C F:(\text { segment } A B C)=H K: K W=3: 1 .
$$

Therefore
But
Therefore

$$
\begin{aligned}
& \text { segment } A B C=\frac{1}{3} \triangle A C F . \\
& \Delta A C F=4 \Delta A B C . \\
& \text { segment } A B C=\frac{4}{3} \triangle A B C .
\end{aligned}
$$

The statement by Archimedes that this is not a proof is found at this point in the Method. The mathematically rigorous proof, contained in Propositions 16 and 17 of Quadrature of the Parabola, will now be given. Be on the lookout for things like Riemann sums.

Prop. 16. Supposed $Q q$ to be the base of a parabolic segment, q being not more distant than Q from the vertext of the parabola. Draw through q the straight line $q E$ parallel to the axis of the parabola to meet the tangent Q in E. It is required to prove that

$$
A(S)=(\text { area of segment })=\frac{1}{3} \Delta E q Q
$$

The proof will employ the method of exhaustion, a technique much used by Archimedes, and will take the form of a double reductio ad absurdum, where the assumptions that the area of the segment is more than and less than $\frac{1}{3}$ the area of the triangle both lead to contradictions.
I. Suppose the area of the segment is greater than $\frac{1}{3} \Delta E q Q$. Then the excess can, if continually added to itself, be made to exceed $\Delta E q Q$. And it is possible to find a submultiple of the triangle $E q Q$ less than the said excess of the segment over $\frac{1}{3} \Delta E q Q$.

Let the triangle $F q Q$ be such a submultiple of the triangle EqQ. Divide Eq into equal parts each equal to $q F$, and let all points of division including F be
 joined to Q meeting the parabola in $R_{1}, R_{2}, \cdots, R_{n}$ respectively. Through $R_{1}, R_{2}, \cdots, R_{n}$ draw diameters of the parabola meeting $q Q$ in $O_{1}, O_{2}, \cdots, O_{n}$ respectively. Let $O_{1} R_{1}$ meet $Q R_{2}$ in F_{1}, let $O_{2} R_{2}$ meet $Q R_{1}$ in D_{1} and $Q R_{3}$ in F_{2}, let $O_{3} R_{3}$ meet $Q R_{2}$ in D_{2} and $Q R_{4}$ in F_{3}, and so on.
We have, by hypothesis,

$$
\Delta F q Q<A(S)-\frac{1}{3} \Delta E q Q
$$

or,

$$
A(S)-\Delta F q Q>\frac{1}{3} \Delta E q Q
$$

Now, since all the parts of $q E$, as $q F$ and the rest, are equal, $O_{1} R_{1}=$ $R_{1} F_{1}, O_{2} D_{1}=R_{2} F_{2}$, and so on; therefore

$$
\begin{align*}
\Delta F q Q & =\left(F O_{1}+R_{1} O_{2}+D_{1} O_{3}+\cdots\right) \\
& =\left(F O_{1}+F_{1} D_{1}+\cdots+F_{n-1} D_{n-1}+\Delta E_{n} R_{n} Q\right)
\end{align*}
$$

But

$$
A(S)<\left(F O_{1}+F_{1} O_{2}+\cdots+F_{n-1} O_{n}+\Delta E_{n} O_{n} Q\right)
$$

Subtracting, we have

$$
A(S)-\Delta F q Q<\left(R_{1} O_{2}+R_{2} O_{3}+\cdots+R_{n-1} O_{n}+\Delta R_{n} O_{n} Q\right)
$$

whence, a fortiori, by (α),

$$
\frac{1}{3} \Delta E q Q<\left(R_{1} O_{2}+R_{2} O_{3}+\cdots+R_{n-1} O_{n}+\Delta R_{n} O_{n} Q\right)
$$

But this is impossible, since [Props. 14, 15]

$$
\frac{1}{3} \Delta E q Q>\left(R_{1} O_{2}+R_{2} O_{3}+\cdots+R_{n-1} O_{n}+\Delta R_{n} O_{n} Q\right)
$$

Therefore

$$
A(S)>\frac{1}{3} \Delta E q Q
$$

cannot be true.
II. If possible, suppose the area of the segment less than $\frac{1}{3} \Delta E q Q$.

Take a submultiple of the triangle $E q Q$, as the triangle $F q Q$, less than the excess of $\frac{1}{3} \Delta E q Q$ over the area of the segment, and make the same construction as before.
Since $\Delta F q Q<\frac{1}{3} \Delta E q Q-A(S)$, it follows that

$$
\Delta F q Q+A(S)<\frac{1}{3} \Delta E q Q<\left(F O_{1}+\cdots+F_{n-1} O_{n}+\Delta E_{n} O_{n} Q\right)
$$

[Props. 14, 15]. Subtracting from each side the area of the segment, we have

$$
\begin{gathered}
\Delta F q Q<\left(\text { sum of spaces } q F R_{1}, R_{1} F_{1} R_{2}, \cdots, E_{n} R_{n} Q\right) \\
<\left(F O_{1}+F_{1} D_{1}+\ldots+F_{n-1} D_{n-1}+\Delta E_{n} R_{n} Q\right), \text { a fortiori; }
\end{gathered}
$$

which is impossible, because, by (β) above,

$$
\Delta F q Q=F O_{1}+F_{1} D_{1}+\cdots+F_{n-1} D_{n-1}+\Delta E_{n} R_{n} Q
$$

Hence the area of the segment cannot be less than $\frac{1}{3} \Delta E q Q$.
Since the area of the segment is neither less nor greater than $\frac{1}{3} \Delta E q Q$, it is equal to it.

Proposition 17. It is now manifest that the area of any segment of a parabola is four-thirds of the triangle which has the same base as the segment and equal height.

Let $Q q$ be the base of the segment, P its vertex. Then $P Q q$ is the inscribed triangle with the same base as the segment and equal height.

Since P is the vertex of the segment, the diameter through P bisects $Q q$. Let V be the point of bisection. Let $V P$, and $q E$ drawn parallel to it, meet the tangent

E at Q in T, E respectively.

Then, by parallels, $q E=2 V T$, and $P V=P T$, [Prop. 2] so that $V T=2 P V$.
Hence $\Delta E q Q=4 \Delta P Q q$. But by Prop. 16, the area of the segment is equal to $\frac{1}{3} \Delta E q Q$.
Therefore

$$
(\text { area of segment })=\frac{4}{3} \Delta P Q q
$$

In case readers were not sure what Archimedes meant by the terms base, height, and vertex in the above work, he defines them immediately after Prop. 17: "In segments bounded by a straight line and any curve, I call the straight line the base, and the height the greatest perpendicular drawn from the curve to the base of the segment, and the vertex the point from which the greatest perpendicular is drawn." Note that the vertex of the segment, as defined by Archimedes, is not necessarily equivalent to the vertex of the parabola.

