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Abstract. The seminal 1969 paper of W. A. Harris, Jr., Y. Sibuya, and L. Wein-
berg provided new proofs for the Perron-Lettenmeyer theorem, as well as several other

classical results, and has stimulated renewed consideration of families of regular solu-

tions of certain singular problems. In this paper we give some further applications of
the method developed there and, in addition, examine some connections between the

Lettenmeyer theorem and an alternative theorem which addresses a problem posed

by H. L. Turrittin that dates back to an 1845 example of Briot and Bouquet.

1. INTRODUCTION.
W. A. Harris’ mathematical father was H. L. Turrittin. The authors of this paper

are Harris’ direct descendents (Harris → Grimm → Hall → Haile), and our results
illustrate the treatment and development of a particular mathematical theme by
five generations of mathematicians. The theme is the study of solutions of singular
systems in the neighborhood of a singularity, especially holomorphic solutions. In
1971 Turrittin [31] posed the following problem.

Given the equation

dW

dz
=
∞∑
j=0

z−jAjW +
∞∑
j=1

z−jBj

where both series converge if |z| ≥ z0 > 0, with a formal solution

W (z) =
∞∑
j=0

z−jCj ,

what are the necessary and sufficient conditions that the formal solution converges?
Special cases of this problem had been solved as long ago as 1845, but in the

general form the question was open. Turrittin speculated that the 1969 paper of
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Harris, Y. Sibuya and L. Weinberg [20] might lead to a solution. Indeed, that paper
(denoted HSW from now on) has been the genesis of much research, in addition to
providing elegant new proofs of a number of classical results, including theorems of
O. Perron [29] and F. Lettenmeyer [26]. Grimm and Hall first became interested in
the HSW paper in connection with their work on functional differential equations.
However, as so often happens in mathematics, one idea led to another, and they
found themselves studying singular inhomogeneous problems. This work, although
related, did not use the same methods as the HSW paper, and led to a Fredholm
alternative type theorem which did settle the question posed by Turrittin. So
Turrittin’s speculation was both right and wrong. On the one hand, the work
which ultimately led to the answer to his question was inspired by HSW, but on
the other hand, the actual techniques used were different from those in HSW.

Other results that can, directly or indirectly, be traced back to HSW include the
work on difference equations by W. J. Fitzpatrick (another Harris descendent) and
Grimm, Hall’s work on the exact number of holomorphic solutions, and the recent
work on the nth order equation by Haile. First, however, we review some of the
classical results concerning holomorphic solutions of singular differential equations
and systems.

2. LETTENMEYER’S THEOREM.
The existence of solutions holomorphic at singular points of linear differential

equations was shown for a special case of the scalar nth order equation by L.
Pochhammer in 1873. The general nth order scalar result was given in 1911 by
Perron [29]:

Theorem 1 (Perron). Let G be a bounded simply connected region containing
the origin in the complex plane, and let the scalar functions a1(z), . . . , an(z) be
holomorphic in G. Then if k < n, the differential equation

(1) zky(n) + a1(z)y(n−1) + · · ·+ an(z)y = 0

has at least n− k linearly independent solutions holomorphic at z = 0.

The corresponding result for first order systems was obtained in 1926 by Letten-
meyer [26]:

Theorem 2 (Lettenmeyer). Let A(z) be an n× n matrix holomorphic at z = 0.

Let D = diag(d1, . . . , dn) where di are nonnegative integers. Then, if n−
n∑
i=1

di > 0,

the differential system

(2) Ly ≡ zD dy
dz

+A(z)y = 0

has at least n−
n∑
i=1

di linearly independent solutions holomorphic at z = 0.
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Definition. For any system of the form (2), we will call the integer ν = n−
n∑
i=1

di

the Lettenmeyer estimate for the system.

Later proofs of the theorems of Perron and Lettenmeyer have afforded additional
insights into the solution structure. E. Hilb [23] based a new proof of Perron’s
theorem on the theory of infinite algebraic systems; still another proof was provided
in 1956 by M. Iwano [24]. P. Hartman gave a simplified version of Lettenmeyer’s
proof in his 1964 book [22]. In 1969, Harris, Sibuya and Weinberg provided a new
approach to Lettenmeyer’s theorem, obtaining it as one of several classical results
which are corollaries to the following theorem [20].

Theorem 3 (Harris, Sibuya and Weinberg). Let A(z) be an n × n matrix
holomorphic at z = 0 and let D = diag(d1, . . . , dn), where di are nonnegative
integers. Then for every positive integer N sufficiently large, and every vector
polynomial φ(z) with zDφ(z) of degree N , there exists a polynomial in z of degree
N − 1, f(z;φ), with coefficients depending on A, N , and φ, such that the linear
differential system

(3) zD
dy

dz
+ A(z)y = f(z;φ)

has a solution y(z) holomorphic at z = 0. Furthermore, f and y are linear homo-
geneous functions of the coefficients of φ, and

(4) zD(y − φ) = O(zN+1)

as z tends to zero.

The function f is constructed in the proof of the theorem. The system (3)
reduces to (2) if

(5) f(z;φ) ≡ 0.

This determining equation is in fact a system ofNn linear homogeneous algebraic

equations in Nn +
(
n−

n∑
i=1

di

)
unknowns, and thus if ν = n −

n∑
i=1

di > 0, there

exist at least ν linearly independent functions φ which satisfy (5). However, by the
order conditions (4), independent solutions y(z) of (2) correspond to independent
φ’s, and thus Lettenmeyer’s theorem holds.

Remark. The HSW theorem itself does not require that ν > 0.

Other proofs of Lettenmeyer’s theorem have been given by B. Malgrange [27], J.
Mawhin [28], and Ju. F. Koroběinik [25] through the use of Fredholm mappings.
The results of Koroběinik include an extended version of Lettenmeyer’s theorem as
well as surjectivity conditions on the mapping provided by the differential operator
L of equation (2).
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3. INHOMOGENEOUS PROBLEMS.
As indicated by the remark in the last section, the HSW theorem actually states

that, regardless of how strong the singularity at z = 0 is, and regardless of whether
the homogeneous equation (2) has a nontrivial holomorphic solution, for every
equation of the form (2), there exist infinitely many holomorphic forcing terms
f(z) such that the corresponding forced equation

(6) zD
dy

dz
+ A(z)y(z) = f(z)

has a solution holomorphic at z = 0. This leads to the question: can we characterize
the holomorphic functions f(z) for which the system (6) will have a holomorphic so-
lution? Before addressing this question, we apply Lettenmeyer’s theorem to several
simple scalar examples.

Homogeneous examples. Let a be a complex constant.
(i) y′ + ay = 0. Here n = 1, d1 = 0, and the conclusion of Lettenmeyer’s

theorem is the standard Picard existence result.
(ii) zy′ + ay = 0. In this case, each solution is a multiple of z−a. If a is

a nonpositive integer, this is holomorphic, otherwise not. Although the
Lettenmeyer theorem does not strictly apply, the Lettenmeyer estimate is
zero, so in the first instance it is not sharp, but it is sharp in the second.

(iii) z2y′ + ay = 0. Every solution is a multiple of ea/z with an essential singu-
larity at the origin if a 6= 0. Here, the Lettenmeyer estimate is equal to −1,
and there are no holomorphic solutions; in this case the estimate can never
be sharp.

Corresponding to these homogeneous cases, we consider related inhomogeneous
problems with holomorphic forcing terms.

Inhomogeneous examples. Let f(z) =
∞∑
k=0

fkz
k.

(i) The equation y′+ay = f(z) has a holomorphic solution for each holomorphic
function f(z).

(ii) We note that for the system zy′ + ay = f(z), the solution is

y = cz−a + z−a
∫ ∞∑
k=0

fkz
k+a−1dz. Thus if a = −p, where p is a nonneg-

ative integer, the solution must contain a logarithmic term unless fp = 0.

However, if a is not a nonpositive integer, the function
∞∑
k=0

fkz
k

k+a will be a

holomorphic solution.
(iii) In 1845, Briot and Bouquet, see [2] p. 75, showed that the equation z2y′ +

ay = f(z) has a solution holomorphic at z = 0 if, and only if,
∞∑
k=0

(−1)kfk+1a
k

k! =

0. In 1899, J. Horn, see [2] p. 76, extended this result to the equation
zn+1y′ + a(z)y = f(z), where a(z) is holomorphic at z = 0.

In his NYU lecture notes [9], K. O. Friedrichs obtained a result for regular
singular first-order systems which shows more clearly the alternative nature of the
structure:
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Theorem 4 (Friedrichs). Suppose zA(z) and zf(z) are holomorphic at z = 0.
Then, either the homogeneous system y′ + A(z)y = 0 has no nontrivial solution
holomorphic at z = 0, and, in this case, the inhomogeneous system y′+A(z)y = f(z)
has exactly one solution holomorphic at zero, or the homogeneous system has at least
one nontrivial holomorphic solution. In this case, the inhomogeneous equation has
a holomorphic solution if, and only if, the function f(z) satisfies one or several
linear conditions.

For the general, possibly irregular singular, case, the results of Koroběinik [25]
together with a representation due to A. E. Taylor [30] were utilized to obtain the
following alternative theorem [13].

Theorem 5 (Grimm and Hall). Let D = diag(d1, . . . , dn) and let A(z) be an
n× n matrix holomorphic at z = 0. Then the inhomogeneous equation

(7) Ly = zD
dy

dz
+A(z)y(z) = f(z)

has a solution y(z) holomorphic at z = 0 for every function f(z) holomorphic at
z = 0 if, and only if, the Lettenmeyer estimate for the associated homogeneous

equation Ly = 0 is sharp, i.e., the homogeneous equation has exactly n −
n∑
i=1

di

independent solutions holomorphic at z = 0. In the contrary case, (7) will have a
solution holomorphic at z = 0 if, and only if, the function f(z) is orthogonal to the
cokernel K(L∗) of the operator L, where the orthoganility condition is expressible
as the limit of a vector Hadamard product.

The orthogonality condition in the space A0(D) of functions holomorphic in
the unit disc D and continuous onto D extends the result of Taylor [30] to vector
functions. The special features of example (ii) illustrate the following result of Hall
[16].

Theorem 6 (Hall). Let A(z) be an n×n matrix holomorphic at z = 0 and let A(0)
have a nonpositive integer eigenvalue. Let −N denote the largest such eigenvalue
with m the dimension of the corresponding eigenspace, and let p be a positive integer.
Then if z = 0 is a regular singular point for Ly = zp dydz +A(z)y = 0, there exist m
linearly independent polynomials of degree N which belong to K(L∗).

Remarks.
1. For the operator L above, dimK(L∗) = n(p − 1) + dimK(L). Thus, for

instance, for the equation zy′+y = 0, K(L) = {0}, so dimK(L∗) = 0, while
for the equation zy′ −Ny = 0, where N is a positive integer, n = 1, p = 1
once again, but K(L) = span{zN}, so dimK(L∗) = 1. In this case there is a
polynomial of degree N in K(L∗), but since dimK(L∗) = 1, this polynomial
spans K(L∗).

2. For the equation z2y′(z)+ay(z) = 0, the cokernel is spanned by the function
g(z) = ze−az , i.e.,

g(z) =
∞∑
k=1

(−1)k−1ak−1

(k − 1)!
zk.
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The Hadamard product in this case is

∞∑
k=0

fkgkz
k =

∞∑
k=1

(−1)k−1fka
k−1

(k − 1)!
zk

and the orthogonality condition is

lim
z→1
|z|<1

∞∑
k=1

(−1)k−1fk a
k−1

(k − 1)!
zk = 0,

which leads to the result obtained by Briot and Bouquet.
3. After transforming the singularity from ∞ to 0, application of Theorem 5

answers Turrittin’s question.

4. THE nTH ORDER CASE.
Here we restrict our considerations to the regular singular point case. let D be

the open unit disk in the complex plane, and Ap the Banach space of functions v(z)
holomorphic in D, continuous and p times continuously differentiable on D, with
norm

‖v‖p = max
{
|v(i)(z)|, 0 ≤ i ≤ p, |z| = 1

}
,

and define the operator L : Ap → A0 by

Ly(z) = zny(n)(z) + zn−1a1(z)y(n−1)(z) + · · ·+ an(z)y(z)

where ai(z) =
∞∑
j=0

ai,jz
j ∈ A0.

The indicial equation for the equation Ly = 0 is

F (r) ≡ r(n) + a1,0r
(n−1) + · · ·+ an−1,0r

(1) + an,0 = 0,

where r(k) is the factorial function r(k) = r(r − 1) · · · (r − k + 1). An nth order
scalar result [15] corresponding to Theorems 5 and 6 is the following theorem:

Theorem 7 (Haile). If the equation F (r) = 0 has no nonnegative integer root, the
cokernel of L is trivial, thus, analogous to Theorems 4 and 5, the equation Ly = 0
has a solution in An for each g ∈ A0. If the equation F (r) = 0 has exactly one
nonnegative integer root, r1, the cokernel of L is spanned by a single polynomial of
degree r1.

A general version of Theorem 7, see [15], gives a complete description of the
cokernel of the nth order regular singular operator L. The cokernel is spanned by
polynomials, and bounds on their degrees are given.

Remark. Recall that, in contrast, in example (iii), with an irregular singularity, the
cokernel is spanned by ze−az .
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5. FURTHER APPLICATIONS AND EXACT ESTIMATES.
Other corollaries of the HSW theorem include a new proof of the convergence

of formally holomorphic solutions in the regular singular case and upper and lower
bounds on the number of meromorphic solutions. E. Wagenführer [32] obtained
Lettenmeyer estimates for meromorphic solutions as well as extensions of the Let-
tenmeyer theorem in cases where the Lettenmeyer estimate is negative. Grimm
and Hall [12] considered a special case of the latter which also extended to a class
of functional differential equations. W. Walter [33] showed that, in the regular sin-
gular case, formal logarithmic solutions will actually converge. In [19] Harris gave
a simple treatment of the complete convergence proof for all formal solutions in the
regular-singular case.

In the general, possibly irregular singular case, the Lettenmeyer theorem gives
a lower bound on the dimension of the holomorphic solution subspace. However,
the exact dimension of this subspace can be found if the dimension of K(L∗) is
known, since the deficiency of the Lettenmeyer estimate is equal to the dimension
of K(L∗). Hall [17] developed an algebraic procedure, involving rank considera-
tions, which determines this dimension. In his Strasbourg dissertation (see [10]), P.
Gonzalez used the method of Hall, correcting a statement there (replacing a matrix
by its transpose), to obtain in addition an exact estimate of the dimension of the
meromorphic subspace.

6. NONLINEAR EQUATIONS.
Lettenmeyer’s theorem was extended to nonlinear systems by R. W. Bass [1]

who obtained the following result.

Theorem 8 (Bass). Let D = diag(d1, . . . , dn) be an n × n matrix, with di non-
negative integers. Let f(z, y) be an n-vector function of z and y = (y1, . . . , yn)T ,
holomorphic in some neighborhood of the origin in (n + 1)-dimensional complex
space. Suppose further that f(z, 0) ≡ 0 so that f can be written in the form
f(z, y) = A(z)y + g(z, y), where A(z) is holomorphic at z = 0 and g(z, y) has
a convergent expansion in powers of y1, . . . , yn, all of whose terms are of second or

higher degree in the yj. Then, if n−
n∑
i=1

di > 0, the system of differential equations

zD
dy

dz
= f(z, y)

has at least an
(
n−

n∑
i=1

di

)
-parameter algebroid family of solutions holomorphic at

z = 0.

The HSW method has greatly simplified the proof of this result also, see [18].
The Lettenmeyer and Bass theorems, together with related results, have been ex-

tended to various classes of functional differential equations by Fitzpatrick, Grimm
and Hall [8], B. L. J. Braaksma and Harris [3], and others, see for instance [11],
[12].
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7. DIFFERENCE EQUATIONS.
Fitzpatrick and Grimm utilized the HSW method to obtain a version of the Let-

tenmeyer theorem for difference equations. Let X(δ) denote the set of all complex-
valued functions g(z) with absolutely convergent inverse factorial series

g(z) = g0 +
∞∑
k=0

gk+1k!
z(z + 1) . . . (z + k)

≡ g0 +
∞∑
k=0

gk+1k!(z − 1)(−k−1)

for Re z ≥ δ > 1, and let Xn(δ) denote the set of n-vector valued functions whose
components are elements of X(δ). The HSW procedure yields the following result
[5].

Theorem 9 (Fitzpatrick and Grimm). Let A(z) and B(z) be n × n matrices
whose elements belong to X(δ). Let D = diag(d1, . . . , dn) with each di equal to
either 1 or 2. Denote by (z− 1)(D) the matrix

(
(z − 1)(d1), . . . (z − 1)(dn)

)
. Then if

d denotes the number of di which are equal to 2, the system

(8) (z − 1)(D)∆−1y(z) = A(z)y(z) +B(z)y(qz),

where q > 1 is a constant and ∆−1 is the standard backward difference, has at least
d linearly independent solutions in Xn(δ).

Remarks.
1. This is a difference equations analogue of the theorem of Lettenmeyer in

the regular singular case only. We do not know of a corresponding result
for difference equations with an irregular singularity at infinity.

2. Theorem 9 can also be proved by using Fredholm mappings, see [14].
3. If di = 2 for all i, then (7) has n linearly independent solutions in Xn(δ). In

this case the solutions of (8) are analogous to solutions of a linear differential
system which has z =∞ as an ordinary point.

4. The use of Waring’s formula allows the case where some di > 2 to be reduced
to di = 2 before application of Theorem 9. Thus Theorem 9 can be used
in all cases where the dj ’s are positive integers. Furthermore, a result of
Harris and Turrittin [21] on factorial series representation of reciprocals of
factorial series permits the reduction of a system of the form

z(k)F (z)∆−1y(z) = A(z)y(z) +B(z)y(qz),

where F , A and B have factorial series representations and k is a positive
integer, to a system of the type considered here.

5. The HSW procedure also provides a result corresponding to Theorem 8 for
nonlinear difference equations [7].
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