Special Functions

Leon M. Hall
Professor of Mathematics
University of Missouri-Rolla

Copyright © 1995 by Leon M. Hall. All rights reserved.

Chapter 1. Euler, Fourier, Bernoulli, Maclaurin, Stirling

1.1. The Integral Test and Euler's Constant

Suppose we have a series $\sum_{k=1}^{\infty} u_{k}$ of decreasing terms and a decreasing function f such that $f(k)=u_{k}$, $k=1,2,3, \ldots$. Also assume f is positive, continuous for $x \geq 1$, and $\lim _{x \rightarrow \infty} f(x)=0$.

Figure 1
Look at Figure 1 to convince yourself that

$$
\sum_{k=1}^{n} u_{k}=\int_{1}^{n} f(x) d x+\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{n-1}\right|+u_{n}
$$

The left side is the sum of the areas of the rectangles on unit bases with heights $u_{1}, u_{2}, \ldots, u_{n}$ determined from the left end point. $\left|T_{k}\right|$ denotes the area of the triangular-shaped pieces T_{k} bounded by $x=k+1$, $y=u_{k}$, and $y=f(x)$. Slide all the $T_{k} s$ left into the rectangle with opposite vertices $(0,0)$ and $\left(1, u_{1}\right)$ and set

$$
A_{n}=\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{n-1}\right|
$$

Clearly (make sure it is clear), $0<A_{2}<A_{3}<\cdots<A_{n}<u_{1}$, so $\left\{A_{n}\right\}$ is a bounded monotone sequence which has a limit:

$$
0<\lim _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty}\left[\left|T_{1}\right|+\left|T_{2}\right|+\cdots+\left|T_{n-1}\right|\right]=C \leq u_{1}
$$

Let $C_{n}=A_{n}+u_{n}$. We have proved the following result, which should be somewhat familiar.

Theorem 1.1.1 (Integral Test). Let f be positive, continuous and decreasing on $x \geq 1$. If $f(x) \rightarrow 0$ as $x \rightarrow \infty$, and if $f(k)=u_{k}$ for each $k=1,2,3, \ldots$, then the sequence of constants $\left\{C_{n}\right\}_{n=1}^{\infty}$ defined by

$$
\sum_{k=1}^{n} u_{k}=\int_{1}^{n} f(x) d x+C_{n}
$$

converges, and $0 \leq \lim _{n \rightarrow \infty} C_{n}=C \leq u_{1}$.

Corollary 1.1.1 (Calculus Integral Test). Let f be positive, continuous and decreasing on $x \geq 1$. If $f(x) \rightarrow 0$ as $x \rightarrow \infty$, and if $f(k)=u_{k}$ for each $k=1,2,3, \ldots$, then the series

$$
\sum_{k=1}^{\infty} u_{k}
$$

converges if and only if the improper integral

$$
\int_{1}^{\infty} f(x) d x
$$

converges.

Example 1.1.1 (The Harmonic Series). $f(x)=1 / x, u_{k}=1 / k$. By the theorem, the sequence $\left\{\gamma_{n}\right\}$ defined by

$$
\sum_{k=1}^{n} \frac{1}{k}=\int_{1}^{n} \frac{1}{x} d x+\gamma_{n}
$$

converges, say to γ, where

$$
\gamma=\lim _{n \rightarrow \infty}\left[\sum_{k=1}^{n} \frac{1}{k}-\log n\right]
$$

The number γ is called Euler's constant, or the Euler-Mascheroni constant and has value

$$
\gamma=0.57721566490153286060651209008 \ldots
$$

It is currently not known whether γ is even rational or not, let alone algebraic or transcendental.

Exercise 1.1.1. Use the above definition and Mathematica or Maple to find the smallest value of n for which γ is correct to four decimal places. Later, we will develop a better way to get accurate approximations of γ.

Example 1.1.2 (The Riemann Zeta Function). $f(x)=1 / x^{s}, s>1$. Now the theorem gives

$$
\sum_{k=1}^{n} \frac{1}{k^{s}}=\frac{1}{s-1}\left(1-\frac{1}{n^{s-1}}\right)+C_{n}(s)
$$

where $0<C_{n}(s)<1$. Let $n \rightarrow \infty$, giving

$$
\sum_{k=1}^{\infty} \frac{1}{k^{s}}=\frac{1}{s-1}+C(s)
$$

with $0<C(s)<1$. The summation is the real part of the Riemann zeta function, $\zeta(s)$, a function with many interesting properties, most of which involve its continuation into the complex plane. However, for the real part we get that

$$
\zeta(s)=\frac{1}{s-1}+C(s)
$$

where $0<C(s)<1$.

We shall return to both these examples later.

1.2. Fourier Series

Let $L>0$ and define the functions $\left\{\phi_{k}(x)\right\}_{k=1}^{\infty}$ on $[0, L]$ by

$$
\phi_{k}(x)=\sqrt{\frac{2}{L}} \sin \frac{k \pi x}{L}
$$

Exercise 1.2.1. Verify that these functions satisfy

$$
\int_{0}^{L}\left|\phi_{k}(x)\right|^{2} d x=1
$$

and, if $j \neq k$,

$$
\int_{0}^{L} \phi_{j}(x) \phi_{k}(x) d x=0
$$

If these two conditions are satisfied, we call $\left\{\phi_{k}(x)\right\}_{k=1}^{\infty}$ an orthonormal set over $[0, L]$.

Now let f be defined on $[0, L]$, and assume that $\int_{0}^{L} f(x) d x$ and $\int_{0}^{L}|f(x)|^{2} d x$ both exist. Define the Fourier coefficients of f by

$$
a_{k}=\int_{0}^{L} f(x) \phi_{k}(x) d x
$$

We want to approximate $f(x)$ by a linear combination of a finite subset of the above orthonormal set.

Exercise 1.2.2. Show that, for any positive integer n,

$$
\int_{0}^{L}\left|f(x)-\sum_{k=1}^{n} c_{k} \phi_{k}(x)\right|^{2} d x=\int_{0}^{L}|f(x)|^{2} d x-\sum_{k=1}^{n}\left|a_{k}\right|^{2}+\sum_{k=1}^{n}\left|c_{k}-a_{k}\right|^{2}
$$

and that the left side of this expression is a minimum when $c_{k}=a_{k}, k=1,2, \ldots, n$. Note that this is a least squares problem.

So, $\int_{0}^{L}\left|f(x)-\sum_{k=1}^{n} a_{k} \phi_{k}(x)\right|^{2} d x=\int_{0}^{L}|f(x)|^{2} d x-\sum_{k=1}^{n}\left|a_{k}\right|^{2}$, and, since the left side cannot be negative,

$$
\sum_{k=1}^{n}\left|a_{k}\right|^{2} \leq \int_{0}^{L}|f(x)|^{2} d x
$$

Since this inequality is true for all n, we have Bessel's Inequality:

$$
\sum_{k=1}^{\infty}\left|a_{k}\right|^{2} \leq \int_{0}^{L}|f(x)|^{2} d x
$$

Notice that the important thing about the set $\left\{\phi_{k}(x)\right\}$ was that it was an orthonormal set. The specific sine functions were not the main idea. Given an orthonormal set and a function f, we call $\sum_{1}^{\infty} a_{k} \phi_{k}(x)$ the Fourier series of f. For our purposes, the most important orthonormal sets are those for which

$$
\lim _{n \rightarrow \infty} \int_{0}^{L}\left|f(x)-\sum_{k=1}^{n} a_{k} \phi_{k}(x)\right|^{2} d x=0
$$

Orthonormal sets with this property are complete. Some examples of complete orthonormal sets follow. The first two are defined on $[0, L]$ and the third one on $[-L, L]$.

$$
\begin{equation*}
\left\{\sqrt{\frac{2}{L}} \sin \frac{k \pi x}{L}\right\}_{k=1}^{\infty} \tag{ON1}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\sqrt{\frac{1}{L}}, \sqrt{\frac{2}{L}} \cos \frac{\pi x}{L}, \sqrt{\frac{2}{L}} \cos \frac{2 \pi x}{L}, \ldots\right\} \tag{ON2}\\
\left\{\sqrt{\frac{1}{2 L}}, \sqrt{\frac{1}{L}} \cos \frac{\pi x}{L}, \sqrt{\frac{1}{L}} \sin \frac{\pi x}{L}, \sqrt{\frac{1}{L}} \cos \frac{2 \pi x}{L}, \sqrt{\frac{1}{L}} \sin \frac{2 \pi x}{L}, \ldots\right\} \tag{ON3}
\end{gather*}
$$

There are other complete orthonormal sets, some of which we will see later.
For a given orthonormal set, the Fourier series $\sum_{k=1}^{\infty} a_{k} \phi_{k}(x)$ is equal to $f(x)$ on $-\infty<x<\infty$ for periodic functions f with period $2 L$ provided
(1) f is bounded and piecewise monotone on $[-L, L]$,
(2) $\lim _{h \rightarrow 0} \frac{f(x+h)+f(x-h)}{2}=f(x)$,
(3) f is odd when (ON1) is the orthonormal set,
(4) f is even when (ON2) is the orthonormal set.

1.3. Bernoulli Functions and Numbers

The Bernoulli functions, $B_{0}(x), B_{1}(x), B_{2}(x), \ldots$, satisfy the following conditions on $-\infty<x<\infty$:

$$
\begin{gathered}
B_{0}(x)=1 \\
B_{n}^{\prime}(x)=B_{n-1}(x), n=1,2,3, \ldots * \\
\int_{0}^{1} B_{n}(x) d x=0, n=1,2,3, \ldots \\
B_{n}(x+1)=B_{n}(x), n=1,2,3, \ldots
\end{gathered}
$$

Exercise 1.3.1. Show that there exist constants $B_{0}, B_{1}, B_{2}, \ldots$ such that for $0<x<1$

$$
\begin{gathered}
B_{0}(x)=\frac{B_{0}}{0!0!} \\
B_{1}(x)=\frac{B_{0} x}{0!1!}+\frac{B_{1}}{1!0!} \\
B_{2}(x)=\frac{B_{0} x^{2}}{0!2!}+\frac{B_{1} x}{1!1!}+\frac{B_{2}}{2!0!} \\
B_{3}(x)=\frac{B_{0} x^{3}}{0!3!}+\frac{B_{1} x^{2}}{1!2!}+\frac{B_{2} x}{2!1!}+\frac{B_{3}}{3!0!} \\
\text { etc. }
\end{gathered}
$$

Exercise 1.3.2. Show that, when $n \geq 2, B_{n}=n!B_{n}(0)$

Exercise 1.3.3. Show that on $(0,1)$,

$$
0!B_{0}(x)=B_{0}
$$

[^0]\[

$$
\begin{gathered}
1!B_{1}(x)=B_{0} x+B_{1} \\
2!B_{2}(x)=B_{0} x^{2}+2 B_{1} x+B_{2} \\
3!B_{3}(x)=B_{0} x^{3}+3 B_{1} x^{2}+3 B_{2} x+B_{3}
\end{gathered}
$$
\]

etc.
Some authors define the Bernoulli polynomials (on $(-\infty, \infty)$) to be the right hand sides of the above equations. If, in the future, you encounter Bernoulli functions or polynomials, be sure to check what is intended by a particular author.

Exercise 1.3.4. Show that for $n \geq 2, B_{n}(1)=B_{n}(0)$.

Exercise 1.3.5. Compute B_{n} for $n=0,1,2,3, \ldots, 12$.

Exercise 1.3.6. Show that $B_{1}(x)=x-\lfloor x\rfloor-1 / 2$ for $-\infty<x<\infty$ and x not an integer. [Note: $\lfloor x\rfloor$ is the greatest integer less than or equal to x.]

Since $B_{1}(x)=x-\frac{1}{2}$ on $(0,1)$ and is an odd function on $(-1,1)$ (do you see why?) we can expand it in Fourier series using (ON1) with $L=1$. The Fourier coefficients are

$$
a_{k}=\sqrt{2} \int_{0}^{1}\left(x-\frac{1}{2}\right) \sin (k \pi x) d x=-\frac{\sqrt{2}}{k \pi}\left(\frac{1+(-1)^{k}}{2}\right) .
$$

Thus, $a_{k}=0$ if k is odd, and $a_{k}=-\frac{\sqrt{2}}{k \pi}$ if k is even. This gives

$$
B_{1}(x)=-2 \sum_{k=1}^{\infty} \frac{\sin (2 k \pi x)}{2 k \pi}=-\frac{2}{2 \pi} \sum_{k=1}^{\infty} \frac{\sin (2 k \pi x)}{k}
$$

Integrate term by term and use the fact that $B_{2}^{\prime}(x)=B_{1}(x)$ to get

$$
B_{2}(x)=\frac{2}{(2 \pi)^{2}} \sum_{k=1}^{\infty} \frac{\cos (2 k \pi x)}{k^{2}}
$$

Similarly,

$$
B_{2 n+1}(x)=(-1)^{n+1} \frac{2}{(2 \pi)^{2 n+1}} \sum_{k=1}^{\infty} \frac{\sin (2 k \pi x)}{k^{2 n+1}}
$$

and

$$
B_{2 n}(x)=(-1)^{n+1} \frac{2}{(2 \pi)^{2 n}} \sum_{k=1}^{\infty} \frac{\cos (2 k \pi x)}{k^{2 n}}
$$

Exercise 1.3.7. The work above with the Fourier series was done formally, without worrying about whether the results were meaningful. Prove that the formulas for $B_{2}(x), B_{2 n+1}(x)$, and $B_{2 n}(x)$ are correct by showing that the series converge and satisfy the properties of the Bernoulli functions.

Exercise 1.3.8. Use Mathematica or Maple to plot graphs of $B_{1}(x), B_{2}(x)$, and $B_{3}(x)$ on $0 \leq x \leq 4$. Also graph the Fourier approximations of $B_{1}(x), B_{2}(x)$, and $B_{3}(x)$ using $n=2, n=5$, and $n=50$.

Example 1.3.1 (Some Values of the Riemann Zeta Function). Since $B_{n}(0)=B_{n} / n$!, we have $B_{2}(0)=1 / 12$. Therefore,

$$
\frac{1}{12}=\frac{2}{(2 \pi)^{2}}\left(\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\ldots\right)
$$

and so we get

$$
\zeta(2)=\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{(2 \pi)^{2}}{(12)(2)}=\frac{\pi^{2}}{6}
$$

Exercise 1.3.9. Find $\zeta(4), \zeta(6)$, and $\zeta(8)$.

Van der Pol used to say that those who know these formulas are mathematicians and those who do not are not.

1.4. The Euler-Maclaurin Formulas

Let p and q be integers and assume f is differentiable (as many times as needed) for $p \leq x \leq q$. Let k be an integer, $p \leq k<q$. Then

$$
\int_{k}^{k+1} f(x) d x=\int_{k}^{k+1} f(x) B_{0}(x) d x=\lim _{\epsilon \rightarrow 0} \int_{k+\epsilon}^{k+1-\epsilon} f(x) B_{1}^{\prime}(x) d x
$$

Integration by parts gives

$$
\left.\int_{k}^{k+1} f(x) d x=\lim _{\epsilon \rightarrow 0}\left[f(x) B_{1}(x)\right]_{k+\epsilon}^{k+1-\epsilon}-\int_{k+\epsilon}^{k+1-\epsilon} f^{\prime}(x) B_{1}(x) d x\right]=\frac{f(k)+f(k+1)}{2}-\int_{k}^{k+1} f^{\prime}(x) B_{1}(x) d x
$$

Adding between p and q, we get

$$
\int_{p}^{q} f(x) d x=\sum_{k=p}^{q-1} \int_{k}^{k+1} f(x) d x=\sum_{k=p}^{q} f(k)-\frac{f(p)+f(q)}{2}-\int_{p}^{q} f^{\prime}(x) B_{1}(x) d x
$$

A slight rearrangement produces the first Euler-Maclaurin Formula:

$$
\begin{equation*}
\sum_{k=p}^{q} f(k)=\int_{p}^{q} f(x) d x+\frac{f(p)+f(q)}{2}+\int_{p}^{q} f^{\prime}(x) B_{1}(x) d x \tag{EM1}
\end{equation*}
$$

This is a useful formula for estimating sums.
Additional Euler-Maclaurin formulas can be obtained by further integration by parts.

Exercise 1.4.1. Derive the following: (Remember that $B_{j}=0$ if $j \geq 3$ and odd.)

$$
\begin{gather*}
\sum_{k=p}^{q} f(k)=\int_{p}^{q} f(x) d x+\frac{f(p)+f(q)}{2}+\frac{f^{\prime}(q)-f^{\prime}(p)}{12}-\int_{p}^{q} f^{\prime \prime}(x) B_{2}(x) d x . \tag{EM2}\\
\sum_{k=p}^{q} f(k)=\int_{p}^{q} f(x) d x+\frac{f(p)+f(q)}{2}+\frac{f^{\prime}(q)-f^{\prime}(p)}{12}+\int_{p}^{q} f^{\prime \prime \prime}(x) B_{3}(x) d x . \tag{EM3}\\
\sum_{k=p}^{q} f(k)=\int_{p}^{q} f(x) d x+\frac{f(p)+f(q)}{2}+\sum_{j=2}^{m}\left(f^{(j-1)}(q)-f^{(j-1)}(p)\right) \frac{B_{j}}{j!}+(-1)^{m+1} \int_{p}^{q} f^{(m)}(x) B_{m}(x) d x .
\end{gather*}
$$

(EMm)

Example 1.4.1. In (EM3), let $f(x)=x^{2}, p=0$, and $q=n$. Since $f^{m}(x)=0$ for $m \geq 3$ we get

$$
\begin{aligned}
\sum_{k=0}^{n} k^{2} & =\int_{0}^{n} x^{2} d x+\frac{0+n^{2}}{2}+\frac{2 n-0}{12} \\
& =\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6} \\
& =\frac{n(n+1)(2 n+1)}{6}
\end{aligned}
$$

This is much neater than mathematical induction.

Example 1.4.2. In (EMm), let $p=0, q=n, m=s$, and $f(x)=x^{s}$, where s is a positive integer other than 1. Then

$$
\begin{aligned}
\sum_{k=0}^{n} k^{s} & =\frac{n^{s+1}}{s+1}+\frac{n^{s}}{2}+\sum_{j=2}^{s} \frac{f^{(j-1)}(n) B_{j}}{j!}+(-1)^{s+1} \int_{0}^{n} s!B_{s}(x) d x \\
& =\frac{n^{s+1}}{s+1}+\frac{n^{s}}{2}+\sum_{j=2}^{s} \frac{s(s-1) \ldots(s-j+2) n^{s-j+1} B_{j}}{j!} \\
& =n^{s}+\frac{1}{s+1} \sum_{j=0}^{s}\binom{s+1}{j} n^{s+1-j} B_{j}
\end{aligned}
$$

Exercise 1.4.2. Fill in the details in the last example and get formulas for $\sum_{k=1}^{n} k^{3}$ and $\sum_{k=1}^{n} k^{4}$.
In some cases, as $x \rightarrow \infty, f^{(m)}(x) \rightarrow 0$ for m large enough. When the integral in the following expression converges, we can define a constant C_{p} by

$$
C_{p}=\frac{f(p)}{2}-\sum_{j=2}^{m} \frac{f^{(j-1)}(p) B_{j}}{j!}+(-1)^{m+1} \int_{p}^{\infty} f^{(m)}(x) B_{m}(x) d x
$$

Exercise 1.4.3. Show that C_{p} is independent of m by showing that the right side is unchanged when m is replaced by $m+1$. Integration by parts helps.

Subtract the C_{p} equation from (EMm) to get

$$
\sum_{k=p}^{q} f(k)=C_{p}+\int_{p}^{q} f(x) d x+\frac{f(q)}{2}+\sum_{j=2}^{m} \frac{f^{(j-1)}(q) B_{j}}{j!}+(-1)^{m} \int_{q}^{\infty} f^{(m)}(x) B_{m}(x) d x
$$

We solve for C_{p} to get

$$
C_{p}=\sum_{k=p}^{q} f(k)-\int_{p}^{q} f(x) d x-\frac{f(q)}{2}-\sum_{j=2}^{m} \frac{f^{(j-1)}(q) B_{j}}{j!}-(-1)^{m} \int_{q}^{\infty} f^{(m)}(x) B_{m}(x) d x
$$

Example 1.4.3 (Euler's Constant). Let $f(x)=1 / x, p=1, q=n$, and (at first) $m=3$. Then the penultimate formula involving C_{p}, now C_{1}, gives

$$
\begin{aligned}
\sum_{k=1}^{n} \frac{1}{k} & =C_{1}+\int_{1}^{n} \frac{1}{x} d x+\frac{1}{2 n}+\sum_{j=2}^{3} \frac{f^{(j-1)}(n) B_{j}}{j!}+(-1)^{3} \int_{n}^{\infty} f^{(3)}(x) B_{3}(x) d x \\
& =\log n+C_{1}+\frac{1}{2 n}-\frac{B_{2}}{n^{2} 2!}-\int_{n}^{\infty}-6 x^{-4} B_{3}(x) d x \\
& =\log n+\gamma+\frac{1}{2 n}-\frac{1}{12 n^{2}}+6 \int_{n}^{\infty} \frac{B_{3}(x)}{x^{4}} d x
\end{aligned}
$$

Exercise 1.4.4. Fill in the details to this point in the example, especially why γ can replace C_{1}. Then, assuming γ is known, obtain bounds on the last integral and approximate $\sum_{k=1}^{n} \frac{1}{k}$ for $n=10,50$, and 100 . How close are your estimates?
(Continuation of Example 1.4.3). If now $q=10$, and m is arbitrary, the last formula for $C_{1}(=\gamma)$ gives

$$
\begin{aligned}
\gamma & =\sum_{k=1}^{10} \frac{1}{k}-\log 10-\frac{1}{20}-\sum_{j=2}^{m} \frac{(-1)^{j-1}(j-1)!B_{j}}{10^{j} j!}-(-1)^{m} \int_{10}^{\infty} \frac{(-1)^{m} m!B_{m}(x)}{x^{m+1}} d x \\
& =\sum_{k=1}^{10} \frac{1}{k}-\log 10-\frac{1}{20}+\sum_{j=2}^{m} \frac{B_{j}}{10^{j} j}-\int_{10}^{\infty} \frac{m!B_{m}(x)}{x^{m+1}} d x
\end{aligned}
$$

Exercise 1.4.5. Prove that if $m=10$ in the last formula for γ, then the integral is less than 10^{-12}, and so the other terms can be used to compute γ correct to at least ten decimal places. Do this computation. To best appreciate the formula, do the computation by hand, assuming that you know $\log 10$ to a sufficient number of places (you have already found exact values for the Bernoulli numbers you need). ($\log 10=$ $2.302585092994 \ldots$..)

1.5 The Stirling Formulas

This section is a (long) derivation of the Stirling formulas for $\log (z!)$ and $z!$. As you work through the section, think about how the steps fit together.

Exercise 1.5.1. Let $p=1, q=n, m \geq 2$, and $f(x)=\log (z+x)$ for $z>-1$. Use (EMm) to get

$$
\begin{align*}
\sum_{k=1}^{n} \log (z+k) & =\left(z+n+\frac{1}{2}\right) \log (z+n)-\left(z+\frac{1}{2}\right) \log (z+1)-n+1 \\
& +\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)}\left(\frac{1}{(z+n)^{j-1}}-\frac{1}{(z+1)^{j-1}}\right) \tag{1.5.1}\\
& +\int_{1}^{n} \frac{(m-1)!B_{m}(x)}{(z+x)^{m}} d x
\end{align*}
$$

Put $z=0$ in (1.5.1) to get

$$
\begin{equation*}
\log (n!)=\left(n+\frac{1}{2}\right) \log n-n+1+\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)}\left(\frac{1}{n^{j-1}}-1\right)+\int_{1}^{n} \frac{(m-1)!B_{m}(x)}{x^{m}} d x \tag{1.5.2}
\end{equation*}
$$

In the next chapter we will see how Wallis' formulas, (see also A\&S, 6.1.49)

$$
\begin{aligned}
\int_{0}^{\pi / 2} \sin ^{2 n} x d x & =\frac{(2 n)!}{2^{2 n}(n!)^{2}} \frac{\pi}{2} \\
\int_{0}^{\pi / 2} \sin ^{2 n+1} x d x & =\frac{2^{2 n}(n!)^{2}}{(2 n)!} \frac{1}{2 n+1}
\end{aligned}
$$

can be used to prove that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{(2 n)!\sqrt{n \pi}}{2^{2 n}(n!)^{2}}=1 \tag{1.5.3}
\end{equation*}
$$

Accept this result for now - you will have a chance to prove it later! From (1.5.3) we get

$$
\begin{equation*}
\lim _{n \rightarrow \infty}[\log ((2 n)!)+\log \sqrt{n \pi}-2 n \log 2-2 \log (n!)]=0 . \tag{1.5.4}
\end{equation*}
$$

Substitute for $\log ((2 n)!)$ and $\log (n!)$ in (1.5.4) using (1.5.2) and simplify to get

$$
\begin{aligned}
\lim _{n \rightarrow \infty}[& \frac{1}{2} \log 2-1+\frac{1}{2} \log \pi \\
& +\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)}\left(\frac{1}{(2 n)^{j-1}}-\frac{2}{n^{j-1}}+1\right) \\
& \left.+\int_{1}^{2 n} \frac{(m-1)!B_{m}(x)}{x^{m}} d x-2 \int_{1}^{n} \frac{(m-1)!B_{m}(x)}{x^{m}} d x\right]=0 .
\end{aligned}
$$

More simplification yields

$$
\begin{equation*}
\log \sqrt{2 \pi}-1+\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)}-\int_{1}^{\infty} \frac{(m-1)!B_{m}(x)}{x^{m}} d x=0 \tag{1.5.5}
\end{equation*}
$$

Exercise 1.5.2. Show that

$$
\begin{equation*}
\int_{1}^{n} \frac{(m-1)!B_{m}(x)}{x^{m}} d x-\int_{1}^{\infty} \frac{(m-1)!B_{m}(x)}{x^{m}} d x=-\int_{0}^{\infty} \frac{(m-1)!B_{m}(x)}{(n+x)^{m}} d x \tag{1.5.6}
\end{equation*}
$$

Add (1.5.5) to (1.5.2), and use (1.5.6) to get

$$
\begin{equation*}
\log (n!)=\log \sqrt{2 \pi}+\left(n+\frac{1}{2}\right) \log n-n+\sum_{j=2}^{m} \frac{B_{j}}{j(j-1) n^{j-1}}-\int_{0}^{\infty} \frac{(m-1)!B_{m}(x)}{(n+x)^{m}} d x \tag{1.5.7}
\end{equation*}
$$

Clearly, for integers $z>0$,

$$
\begin{aligned}
z! & =\lim _{n \rightarrow \infty} 1 \cdot 2 \cdot 3 \cdot \ldots \cdot z \\
& =\lim _{n \rightarrow \infty} \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot z(z+1)(\ldots(z+n)}{(z+1) \ldots(z+n)} \\
& =\lim _{n \rightarrow \infty}\left[\left(\frac{n!n^{z}}{(z+1) \ldots(z+n)}\right)\left(\frac{n+1}{n}\right)\left(\frac{n+2}{n}\right) \ldots\left(\frac{n+z)}{n}\right)\right] .
\end{aligned}
$$

Since each of the last factors has limit one, we have (see A\&S, 6.1.2), for $z>-1$,

$$
\begin{equation*}
z!=\lim _{n \rightarrow \infty} \frac{n!n^{z}}{(z+1)(z+2) \ldots(z+n)} \tag{1.5.8}
\end{equation*}
$$

Taking logs,

$$
\begin{equation*}
\log (z!)=\lim _{n \rightarrow \infty}\left[\log (n!)+z \log n-\sum_{k=1}^{n} \log (z+k)\right] \tag{1.5.9}
\end{equation*}
$$

Substitute from (1.5.7) and (1.5.1) to get

$$
\begin{align*}
\log (z!) & =\log \sqrt{2 \pi}+\left(z+\frac{1}{2}\right) \log (z+1)-(z+1) \\
& +\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)(z+1)^{j-1}}-\int_{1}^{\infty} \frac{(m-1)!B_{m}(x)}{(z+x)^{m}} d x \tag{1.5.10}
\end{align*}
$$

Exercise 1.5.3. Show that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left[\left(z+n+\frac{1}{2}\right)(\log (z+n)-\log n)\right]=z \tag{1.5.11}
\end{equation*}
$$

and use this fact to get (1.5.10).

If $z>0$, add $\log (z+1)$ to both sides of (1.5.10)

$$
\begin{aligned}
\log ((z+1)!) & =\log \sqrt{2 \pi}+\left(z+\frac{3}{2}\right) \log (z+1)-(z+1) \\
& +\sum_{j=2}^{m} \frac{B_{j}}{j(j-1)(z+1)^{j-1}}-\int_{1}^{\infty} \frac{(m-1)!B_{m}(x)}{(z+x)^{m}} d x
\end{aligned}
$$

Finally, replace $z+1$ by z :

$$
\begin{align*}
\log (z!) & =\log \sqrt{2 \pi}+\left(z+\frac{1}{2}\right) \log z-z \\
& +\sum_{j=2}^{m} \frac{B_{j}}{j(j-1) z^{j-1}}-\int_{0}^{\infty} \frac{(m-1)!B_{m}(x)}{(z+x)^{m}} d x . \tag{1.5.12}
\end{align*}
$$

Note that for $z=n,(1.5 .12)$ is identical to (1.5.7).
For $z \in \mathbb{C}-\{z \mid \Re(z) \leq 0\}$, everything on the right side of (1.5.12) is analytic. Analytic continuation then makes (1.5.12) valid for all complex z not on the non-positive real axis. To make the notation more compact, let

$$
\begin{equation*}
E(z)=\sum_{j=2}^{m} \frac{B_{j}}{j(j-1) z^{j-1}}-\int_{0}^{\infty} \frac{(m-1)!B_{m}(x)}{(z+x)^{m}} d x \tag{1.5.13}
\end{equation*}
$$

so that (1.5.12) becomes

$$
\begin{equation*}
\log (z!)=\log \sqrt{2 \pi}+\left(z+\frac{1}{2}\right) \log z-z+E(z) \tag{1.5.14}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
z!=\sqrt{2 \pi z} z^{z} e^{-z} e^{E(z)} \tag{1.5.15}
\end{equation*}
$$

Equations (1.5.14) and (1.5.15) are the Stirling formulas for $\log (z!)$ and $z!$. Equation (1.5.15) can be thought of as defining z ! when z is not a positive integer. See A\&S, 6.1.37 and 6.1.38. The term $E(z)$ is small and can be bounded by simple functions, so the Stirling formulas can be used to estimate $z!$ and $\log (z!)$ quite accurately.

Exercise 1.5.4. For z real and positive, show that

$$
0<E(z)<\frac{1}{12 z}
$$

and

$$
\frac{1}{12 z}-\frac{1}{360 z^{3}}<E(z)<\frac{1}{12 z}-\frac{1}{360 z^{3}}+\frac{1}{1260 z^{5}}
$$

Exercise 1.5.5. Use the Stirling formulas to estimate 5! and $\log (5!)$ within 3 decimal places, then do the same for 5.5 ! and $\log (5.5!)$. Think about how you could find these values without a fancy calculator or computer.

[^0]: * Except when $n=1$ or 2 and x is an integer.

