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Chapter 1. Euler, Fourier, Bernoulli, Maclaurin, Stirling

1.1. The Integral Test and Euler’s Constant

Suppose we have a series
∞
∑

k=1

uk of decreasing terms and a decreasing function f such that f(k) = uk,

k = 1, 2, 3, . . .. Also assume f is positive, continuous for x ≥ 1, and lim
x→∞

f(x) = 0.
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Figure 1

Look at Figure 1 to convince yourself that

n
∑

k=1

uk =

∫ n

1

f(x) dx+ |T1|+ |T2|+ · · ·+ |Tn−1|+ un.

The left side is the sum of the areas of the rectangles on unit bases with heights u1, u2, . . . , un determined
from the left end point. |Tk| denotes the area of the triangular-shaped pieces Tk bounded by x = k + 1,
y = uk, and y = f(x). Slide all the Tks left into the rectangle with opposite vertices (0, 0) and (1, u1) and
set

An = |T1|+ |T2|+ · · ·+ |Tn−1|
Clearly (make sure it is clear), 0 < A2 < A3 < · · · < An < u1, so {An} is a bounded monotone sequence
which has a limit:

0 < lim
n→∞

An = lim
n→∞

[|T1|+ |T2|+ · · ·+ |Tn−1|] = C ≤ u1.

Let Cn = An + un. We have proved the following result, which should be somewhat familiar.

Theorem 1.1.1 (Integral Test). Let f be positive, continuous and decreasing on x ≥ 1. If f(x) → 0 as
x → ∞, and if f(k) = uk for each k = 1, 2, 3, . . ., then the sequence of constants {Cn}∞n=1 defined by

n
∑

k=1

uk =

∫ n

1

f(x) dx+ Cn

converges, and 0 ≤ lim
n→∞

Cn = C ≤ u1.

Corollary 1.1.1 (Calculus Integral Test). Let f be positive, continuous and decreasing on x ≥ 1. If
f(x) → 0 as x → ∞, and if f(k) = uk for each k = 1, 2, 3, . . ., then the series

∞
∑

k=1

uk
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converges if and only if the improper integral

∫ ∞

1

f(x) dx

converges.

Example 1.1.1 (The Harmonic Series). f(x) = 1/x, uk = 1/k . By the theorem, the sequence {γn}
defined by

n
∑

k=1

1

k
=

∫ n

1

1

x
dx+ γn

converges, say to γ, where

γ = lim
n→∞

[

n
∑

k=1

1

k
− logn

]

.

The number γ is called Euler’s constant, or the Euler-Mascheroni constant and has value

γ = 0.5772 15664 90153 28606 06512 09008 . . .

It is currently not known whether γ is even rational or not, let alone algebraic or transcendental.

Exercise 1.1.1. Use the above definition and Mathematica or Maple to find the smallest value of n for
which γ is correct to four decimal places. Later, we will develop a better way to get accurate approximations
of γ.

Example 1.1.2 (The Riemann Zeta Function). f(x) = 1/xs, s > 1. Now the theorem gives

n
∑

k=1

1

ks
=

1

s− 1

(

1− 1

ns−1

)

+ Cn(s)

where 0 < Cn(s) < 1. Let n → ∞, giving

∞
∑

k=1

1

ks
=

1

s− 1
+ C(s)

with 0 < C(s) < 1. The summation is the real part of the Riemann zeta function, ζ(s), a function with
many interesting properties, most of which involve its continuation into the complex plane. However, for the
real part we get that

ζ(s) =
1

s− 1
+ C(s),

where 0 < C(s) < 1.

We shall return to both these examples later.

1.2. Fourier Series

Let L > 0 and define the functions
{

φk(x)
}∞

k=1
on [0, L] by

φk(x) =

√

2

L
sin

kπx

L
.
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Exercise 1.2.1. Verify that these functions satisfy

∫ L

0

∣

∣

∣
φk(x)

∣

∣

∣

2

dx = 1,

and, if j 6= k,
∫ L

0

φj(x)φk(x) dx = 0.

If these two conditions are satisfied, we call {φk(x)}∞k=1 an orthonormal set over [0, L].

Now let f be defined on [0, L], and assume that
∫ L

0 f(x) dx and
∫ L

0

∣

∣

∣
f(x)

∣

∣

∣

2

dx both exist. Define the Fourier

coefficients of f by

ak =

∫ L

0

f(x)φk(x) dx.

We want to approximate f(x) by a linear combination of a finite subset of the above orthonormal set.

Exercise 1.2.2. Show that, for any positive integer n,

∫ L

0

∣

∣

∣
f(x)−

n
∑

k=1

ckφk(x)
∣

∣

∣

2

dx =

∫ L

0

∣

∣

∣
f(x)

∣

∣

∣

2

dx −
n
∑

k=1

∣

∣

∣
ak

∣

∣

∣

2

+
n
∑

k=1

∣

∣

∣
ck − ak

∣

∣

∣

2

,

and that the left side of this expression is a minimum when ck = ak, k = 1, 2, . . . , n. Note that this is a least
squares problem.

So,
∫ L

0

∣

∣

∣
f(x)−

∑n
k=1 akφk(x)

∣

∣

∣

2

dx =
∫ L

0

∣

∣

∣
f(x)

∣

∣

∣

2

dx−
∑n

k=1

∣

∣

∣
ak

∣

∣

∣

2

, and, since the left side cannot be negative,

n
∑

k=1

∣

∣

∣
ak

∣

∣

∣

2

≤
∫ L

0

∣

∣

∣
f(x)

∣

∣

∣

2

dx.

Since this inequality is true for all n, we have Bessel’s Inequality:

∞
∑

k=1

∣

∣

∣
ak

∣

∣

∣

2

≤
∫ L

0

∣

∣

∣
f(x)

∣

∣

∣

2

dx.

Notice that the important thing about the set {φk(x)} was that it was an orthonormal set. The specific
sine functions were not the main idea. Given an orthonormal set and a function f , we call

∑∞
1 ak φk(x) the

Fourier series of f . For our purposes, the most important orthonormal sets are those for which

lim
n→∞

∫ L

0

∣

∣

∣
f(x)−

n
∑

k=1

akφk(x)
∣

∣

∣

2

dx = 0.

Orthonormal sets with this property are complete. Some examples of complete orthonormal sets follow. The
first two are defined on [0, L] and the third one on [−L,L].

{

√

2

L
sin

kπx

L

}∞

k=1

(ON1)
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{

√

1

L
,

√

2

L
cos

πx

L
,

√

2

L
cos

2πx

L
, . . .

}

(ON2)

{

√

1

2L
,

√

1

L
cos

πx

L
,

√

1

L
sin

πx

L
,

√

1

L
cos

2πx

L
,

√

1

L
sin

2πx

L
, . . .

}

(ON3)

There are other complete orthonormal sets, some of which we will see later.

For a given orthonormal set, the Fourier series
∑∞

k=1 ak φk(x) is equal to f(x) on −∞ < x < ∞ for periodic
functions f with period 2L provided

(1) f is bounded and piecewise monotone on [−L,L],

(2) lim
h→0

f(x+ h) + f(x− h)

2
= f(x),

(3) f is odd when (ON1) is the orthonormal set,

(4) f is even when (ON2) is the orthonormal set.

1.3. Bernoulli Functions and Numbers

The Bernoulli functions, B0(x), B1(x), B2(x), . . ., satisfy the following conditions on −∞ < x < ∞:

B0(x) = 1

B′
n(x) = Bn−1(x), n = 1, 2, 3, . . .∗
∫ 1

0

Bn(x) dx = 0, n = 1, 2, 3, . . .

Bn(x+ 1) = Bn(x), n = 1, 2, 3, . . .

Exercise 1.3.1. Show that there exist constants B0, B1, B2, . . . such that for 0 < x < 1

B0(x) =
B0

0!0!

B1(x) =
B0x

0!1!
+

B1

1!0!

B2(x) =
B0x

2

0!2!
+

B1x

1!1!
+

B2

2!0!

B3(x) =
B0x

3

0!3!
+

B1x
2

1!2!
+

B2x

2!1!
+

B3

3!0!

etc.

Exercise 1.3.2. Show that , when n ≥ 2, Bn = n!Bn(0)

Exercise 1.3.3. Show that on (0, 1),
0!B0(x) = B0

* Except when n = 1 or 2 and x is an integer.
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1!B1(x) = B0x+B1

2!B2(x) = B0x
2 + 2B1x+B2

3!B3(x) = B0x
3 + 3B1x

2 + 3B2x+B3

etc.

Some authors define the Bernoulli polynomials (on (−∞,∞)) to be the right hand sides of the above equa-
tions. If, in the future, you encounter Bernoulli functions or polynomials, be sure to check what is intended
by a particular author.

Exercise 1.3.4. Show that for n ≥ 2, Bn(1) = Bn(0).

Exercise 1.3.5. Compute Bn for n = 0, 1, 2, 3, . . . , 12.

Exercise 1.3.6. Show that B1(x) = x − ⌊x⌋ − 1/2 for −∞ < x < ∞ and x not an integer. [Note: ⌊x⌋ is
the greatest integer less than or equal to x.]

Since B1(x) = x − 1
2 on (0, 1) and is an odd function on (−1, 1) (do you see why?) we can expand it in

Fourier series using (ON1) with L = 1. The Fourier coefficients are

ak =
√
2

∫ 1

0

(x− 1

2
) sin(kπx) dx = −

√
2

kπ

(

1 + (−1)k

2

)

.

Thus, ak = 0 if k is odd, and ak = −
√
2

kπ if k is even. This gives

B1(x) = −2

∞
∑

k=1

sin(2kπx)

2kπ
= − 2

2π

∞
∑

k=1

sin(2kπx)

k
.

Integrate term by term and use the fact that B′
2(x) = B1(x) to get

B2(x) =
2

(2π)2

∞
∑

k=1

cos(2kπx)

k2
.

Similarly,

B2n+1(x) = (−1)n+1 2

(2π)2n+1

∞
∑

k=1

sin(2kπx)

k2n+1
,

and

B2n(x) = (−1)n+1 2

(2π)2n

∞
∑

k=1

cos(2kπx)

k2n
.

Exercise 1.3.7. The work above with the Fourier series was done formally, without worrying about whether
the results were meaningful. Prove that the formulas for B2(x), B2n+1(x), and B2n(x) are correct by showing
that the series converge and satisfy the properties of the Bernoulli functions.

Exercise 1.3.8. Use Mathematica or Maple to plot graphs of B1(x), B2(x), and B3(x) on 0 ≤ x ≤ 4. Also
graph the Fourier approximations of B1(x), B2(x), and B3(x) using n = 2, n = 5, and n = 50.

Example 1.3.1 (Some Values of the Riemann Zeta Function). Since Bn(0) = Bn/n!, we have
B2(0) = 1/12. Therefore,

1

12
=

2

(2π)2

(

1

12
+

1

22
+

1

32
+ . . .

)
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and so we get

ζ(2) =

∞
∑

k=1

1

k2
=

(2π)2

(12)(2)
=

π2

6
.

Exercise 1.3.9. Find ζ(4), ζ(6), and ζ(8).

Van der Pol used to say that those who know these formulas are mathematicians and those who do not are
not.

1.4. The Euler-Maclaurin Formulas

Let p and q be integers and assume f is differentiable (as many times as needed) for p ≤ x ≤ q. Let k be an
integer, p ≤ k < q. Then

∫ k+1

k

f(x) dx =

∫ k+1

k

f(x)B0(x) dx = lim
ǫ→0

∫ k+1−ǫ

k+ǫ

f(x)B′
1(x) dx.

Integration by parts gives

∫ k+1

k

f(x) dx = lim
ǫ→0

[

f(x)B1(x)
]k+1−ǫ

k+ǫ
−
∫ k+1−ǫ

k+ǫ

f ′(x)B1(x) dx

]

=
f(k) + f(k + 1)

2
−
∫ k+1

k

f ′(x)B1(x) dx.

Adding between p and q, we get

∫ q

p

f(x) dx =

q−1
∑

k=p

∫ k+1

k

f(x) dx =

q
∑

k=p

f(k)− f(p) + f(q)

2
−
∫ q

p

f ′(x)B1(x) dx.

A slight rearrangement produces the first Euler-Maclaurin Formula:

q
∑

k=p

f(k) =

∫ q

p

f(x) dx+
f(p) + f(q)

2
+

∫ q

p

f ′(x)B1(x) dx. (EM1)

This is a useful formula for estimating sums.

Additional Euler-Maclaurin formulas can be obtained by further integration by parts.

Exercise 1.4.1. Derive the following: (Remember that Bj = 0 if j ≥ 3 and odd.)

q
∑

k=p

f(k) =

∫ q

p

f(x) dx +
f(p) + f(q)

2
+

f ′(q)− f ′(p)

12
−
∫ q

p

f ′′(x)B2(x) dx. (EM2)

q
∑

k=p

f(k) =

∫ q

p

f(x) dx+
f(p) + f(q)

2
+

f ′(q)− f ′(p)

12
+

∫ q

p

f ′′′(x)B3(x) dx. (EM3)

q
∑

k=p

f(k) =

∫ q

p

f(x) dx +
f(p) + f(q)

2
+

m
∑

j=2

(

f (j−1)(q)− f (j−1)(p)
) Bj

j!
+ (−1)m+1

∫ q

p

f (m)(x)Bm(x) dx.

(EMm)
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Example 1.4.1. In (EM3), let f(x) = x2, p = 0, and q = n. Since fm(x) = 0 for m ≥ 3 we get
n
∑

k=0

k2 =

∫ n

0

x2 dx+
0 + n2

2
+

2n− 0

12

=
n3

3
+

n2

2
+

n

6

=
n(n+ 1)(2n+ 1)

6
.

This is much neater than mathematical induction.

Example 1.4.2. In (EMm), let p = 0, q = n, m = s, and f(x) = xs, where s is a positive integer other
than 1. Then

n
∑

k=0

ks =
ns+1

s+ 1
+

ns

2
+

s
∑

j=2

f (j−1)(n)Bj

j!
+ (−1)s+1

∫ n

0

s!Bs(x) dx

=
ns+1

s+ 1
+

ns

2
+

s
∑

j=2

s(s− 1) . . . (s− j + 2)ns−j+1Bj

j!

= ns +
1

s+ 1

s
∑

j=0

(

s+ 1
j

)

ns+1−jBj

Exercise 1.4.2. Fill in the details in the last example and get formulas for
∑n

k=1 k
3 and

∑n
k=1 k

4.

In some cases, as x → ∞, f (m)(x) → 0 for m large enough. When the integral in the following expression
converges, we can define a constant Cp by

Cp =
f(p)

2
−

m
∑

j=2

f (j−1)(p)Bj

j!
+ (−1)m+1

∫ ∞

p

f (m)(x)Bm(x) dx.

Exercise 1.4.3. Show that Cp is independent of m by showing that the right side is unchanged when m is
replaced by m+ 1. Integration by parts helps.

Subtract the Cp equation from (EMm) to get

q
∑

k=p

f(k) = Cp +

∫ q

p

f(x) dx+
f(q)

2
+

m
∑

j=2

f (j−1)(q)Bj

j!
+ (−1)m

∫ ∞

q

f (m)(x)Bm(x) dx.

We solve for Cp to get

Cp =

q
∑

k=p

f(k)−
∫ q

p

f(x) dx− f(q)

2
−

m
∑

j=2

f (j−1)(q)Bj

j!
− (−1)m

∫ ∞

q

f (m)(x)Bm(x) dx.

Example 1.4.3 (Euler’s Constant). Let f(x) = 1/x, p = 1, q = n, and (at first) m = 3. Then the
penultimate formula involving Cp, now C1, gives

n
∑

k=1

1

k
= C1 +

∫ n

1

1

x
dx+

1

2n
+

3
∑

j=2

f (j−1)(n)Bj

j!
+ (−1)3

∫ ∞

n

f (3)(x)B3(x) dx

= logn+ C1 +
1

2n
− B2

n22!
−
∫ ∞

n

−6x−4B3(x) dx

= logn+ γ +
1

2n
− 1

12n2
+ 6

∫ ∞

n

B3(x)

x4
dx.
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Exercise 1.4.4. Fill in the details to this point in the example, especially why γ can replace C1. Then,
assuming γ is known, obtain bounds on the last integral and approximate

∑n
k=1

1
k for n = 10, 50, and 100.

How close are your estimates?

(Continuation of Example 1.4.3). If now q = 10, and m is arbitrary, the last formula for C1 (= γ) gives

γ =

10
∑

k=1

1

k
− log 10− 1

20
−

m
∑

j=2

(−1)j−1(j − 1)!Bj

10jj!
− (−1)m

∫ ∞

10

(−1)mm!Bm(x)

xm+1
dx

=

10
∑

k=1

1

k
− log 10− 1

20
+

m
∑

j=2

Bj

10jj
−
∫ ∞

10

m!Bm(x)

xm+1
dx.

Exercise 1.4.5. Prove that if m = 10 in the last formula for γ, then the integral is less than 10−12, and
so the other terms can be used to compute γ correct to at least ten decimal places. Do this computation.
To best appreciate the formula, do the computation by hand, assuming that you know log 10 to a sufficient
number of places (you have already found exact values for the Bernoulli numbers you need). (log 10 =
2.3025 85092 994 . . .)

1.5 The Stirling Formulas

This section is a (long) derivation of the Stirling formulas for log (z!) and z!. As you work through the
section, think about how the steps fit together.

Exercise 1.5.1. Let p = 1, q = n, m ≥ 2, and f(x) = log (z + x) for z > −1. Use (EMm) to get

n
∑

k=1

log (z + k) = (z + n+
1

2
) log (z + n)− (z +

1

2
) log (z + 1)− n+ 1

+

m
∑

j=2

Bj

j(j − 1)

(

1

(z + n)j−1
− 1

(z + 1)j−1

)

(1.5.1)

+

∫ n

1

(m− 1)!Bm(x)

(z + x)m
dx.

Put z = 0 in (1.5.1) to get

log (n!) = (n+
1

2
) logn− n+ 1 +

m
∑

j=2

Bj

j(j − 1)

(

1

nj−1
− 1

)

+

∫ n

1

(m− 1)!Bm(x)

xm
dx. (1.5.2)

In the next chapter we will see how Wallis’ formulas, (see also A&S, 6.1.49)

∫ π/2

0

sin2n x dx =
(2n)!

22n(n!)2
π

2
,

∫ π/2

0

sin2n+1 x dx =
22n(n!)2

(2n)!

1

2n+ 1
,

can be used to prove that

lim
n→∞

(2n)!
√
nπ

22n(n!)2
= 1. (1.5.3)
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Accept this result for now - you will have a chance to prove it later! From (1.5.3) we get

lim
n→∞

[

log ((2n)!) + log
√
nπ − 2n log 2− 2 log (n!)

]

= 0. (1.5.4)

Substitute for log ((2n)!) and log (n!) in (1.5.4) using (1.5.2) and simplify to get

lim
n→∞

[

1

2
log 2− 1 +

1

2
log π

+

m
∑

j=2

Bj

j(j − 1)

(

1

(2n)j−1
− 2

nj−1
+ 1

)

+

∫ 2n

1

(m− 1)!Bm(x)

xm
dx− 2

∫ n

1

(m− 1)!Bm(x)

xm
dx

]

= 0.

More simplification yields

log
√
2π − 1 +

m
∑

j=2

Bj

j(j − 1)
−
∫ ∞

1

(m− 1)!Bm(x)

xm
dx = 0 (1.5.5)

Exercise 1.5.2. Show that
∫ n

1

(m− 1)!Bm(x)

xm
dx−

∫ ∞

1

(m− 1)!Bm(x)

xm
dx = −

∫ ∞

0

(m− 1)!Bm(x)

(n+ x)m
dx (1.5.6)

Add (1.5.5) to (1.5.2), and use (1.5.6) to get

log (n!) = log
√
2π + (n+

1

2
) logn− n+

m
∑

j=2

Bj

j(j − 1)nj−1
−
∫ ∞

0

(m− 1)!Bm(x)

(n+ x)m
dx. (1.5.7)

Clearly, for integers z > 0,

z! = lim
n→∞

1 · 2 · 3 · . . . · z

= lim
n→∞

1 · 2 · 3 · . . . · z(z + 1)(. . . (z + n)

(z + 1) . . . (z + n)

= lim
n→∞

[(

n!nz

(z + 1) . . . (z + n)

)(

n+ 1

n

)(

n+ 2

n

)

. . .

(

n+ z)

n

)]

.

Since each of the last factors has limit one, we have (see A&S, 6.1.2), for z > −1,

z! = lim
n→∞

n!nz

(z + 1)(z + 2) . . . (z + n)
. (1.5.8)

Taking logs,

log (z!) = lim
n→∞

[

log (n!) + z logn−
n
∑

k=1

log (z + k)

]

. (1.5.9)

Substitute from (1.5.7) and (1.5.1) to get

log (z!) = log
√
2π + (z +

1

2
) log (z + 1)− (z + 1)

+

m
∑

j=2

Bj

j(j − 1)(z + 1)j−1
−
∫ ∞

1

(m− 1)!Bm(x)

(z + x)m
dx. (1.5.10)
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Exercise 1.5.3. Show that

lim
n→∞

[(

z + n+
1

2

)

(log (z + n)− logn)

]

= z (1.5.11)

and use this fact to get (1.5.10).

If z > 0, add log (z + 1) to both sides of (1.5.10)

log ((z + 1)!) = log
√
2π + (z +

3

2
) log (z + 1)− (z + 1)

+

m
∑

j=2

Bj

j(j − 1)(z + 1)j−1
−
∫ ∞

1

(m− 1)!Bm(x)

(z + x)m
dx.

Finally, replace z + 1 by z:

log (z!) = log
√
2π + (z +

1

2
) log z − z

+

m
∑

j=2

Bj

j(j − 1)zj−1
−

∫ ∞

0

(m− 1)!Bm(x)

(z + x)m
dx. (1.5.12)

Note that for z = n, (1.5.12) is identical to (1.5.7).

For z ∈ C − {z | ℜ(z) ≤ 0}, everything on the right side of (1.5.12) is analytic. Analytic continuation then
makes (1.5.12) valid for all complex z not on the non-positive real axis. To make the notation more compact,
let

E(z) =
m
∑

j=2

Bj

j(j − 1)zj−1
−
∫ ∞

0

(m− 1)!Bm(x)

(z + x)m
dx, (1.5.13)

so that (1.5.12) becomes

log (z!) = log
√
2π + (z +

1

2
) log z − z + E(z), (1.5.14)

or, equivalently,
z! =

√
2πz zze−zeE(z). (1.5.15)

Equations (1.5.14) and (1.5.15) are the Stirling formulas for log (z!) and z!. Equation (1.5.15) can be thought
of as defining z! when z is not a positive integer. See A&S, 6.1.37 and 6.1.38. The term E(z) is small and
can be bounded by simple functions, so the Stirling formulas can be used to estimate z! and log (z!) quite
accurately.

Exercise 1.5.4. For z real and positive, show that

0 < E(z) <
1

12z
,

and
1

12z
− 1

360z3
< E(z) <

1

12z
− 1

360z3
+

1

1260z5
.

Exercise 1.5.5. Use the Stirling formulas to estimate 5! and log (5!) within 3 decimal places, then do the
same for 5.5! and log (5.5!). Think about how you could find these values without a fancy calculator or
computer.
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