Special Functions

Leon M. Hall Professor of Mathematics University of Missouri-Rolla

Copyright ©1995 by Leon M. Hall. All rights reserved.

Chapter 1. Euler, Fourier, Bernoulli, Maclaurin, Stirling

1.1. The Integral Test and Euler's Constant

Suppose we have a series $\sum_{k=1}^{\infty} u_k$ of decreasing terms and a decreasing function f such that $f(k) = u_k$, $k = 1, 2, 3, \dots$ Also assume f is positive, continuous for $x \ge 1$, and $\lim_{x \to \infty} f(x) = 0$.

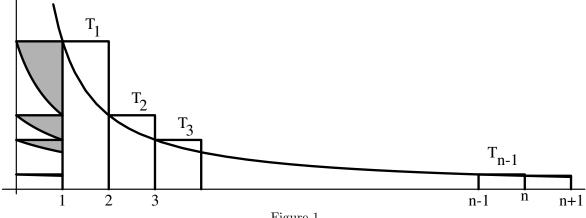


Figure 1

Look at Figure 1 to convince yourself that

$$\sum_{k=1}^{n} u_k = \int_1^n f(x) \, dx + |T_1| + |T_2| + \dots + |T_{n-1}| + u_n.$$

The left side is the sum of the areas of the rectangles on unit bases with heights u_1, u_2, \ldots, u_n determined from the left end point. $|T_k|$ denotes the area of the triangular-shaped pieces T_k bounded by x = k + 1, $y = u_k$, and y = f(x). Slide all the $T_k s$ left into the rectangle with opposite vertices (0,0) and $(1, u_1)$ and set

$$A_n = |T_1| + |T_2| + \dots + |T_{n-1}|$$

Clearly (make sure it is clear), $0 < A_2 < A_3 < \cdots < A_n < u_1$, so $\{A_n\}$ is a bounded monotone sequence which has a limit:

$$0 < \lim_{n \to \infty} A_n = \lim_{n \to \infty} \left[|T_1| + |T_2| + \dots + |T_{n-1}| \right] = C \le u_1$$

Let $C_n = A_n + u_n$. We have proved the following result, which should be somewhat familiar.

Theorem 1.1.1 (Integral Test). Let f be positive, continuous and decreasing on $x \ge 1$. If $f(x) \to 0$ as $x \to \infty$, and if $f(k) = u_k$ for each $k = 1, 2, 3, \ldots$, then the sequence of constants $\{C_n\}_{n=1}^{\infty}$ defined by

$$\sum_{k=1}^{n} u_k = \int_{1}^{n} f(x) \, dx + C_n$$

converges, and $0 \leq \lim_{n \to \infty} C_n = C \leq u_1$.

Corollary 1.1.1 (Calculus Integral Test). Let f be positive, continuous and decreasing on $x \ge 1$. If $f(x) \to 0$ as $x \to \infty$, and if $f(k) = u_k$ for each $k = 1, 2, 3, \ldots$, then the series

$$\sum_{k=1}^{\infty} u_k$$

converges if and only if the improper integral

$$\int_{1}^{\infty} f(x) \, dx$$

converges.

Example 1.1.1 (The Harmonic Series). f(x) = 1/x, $u_k = 1/k$. By the theorem, the sequence $\{\gamma_n\}$ defined by

$$\sum_{k=1}^{n} \frac{1}{k} = \int_{1}^{n} \frac{1}{x} dx + \gamma_n$$

converges, say to γ , where

$$\gamma = \lim_{n \to \infty} \left[\sum_{k=1}^{n} \frac{1}{k} - \log n \right].$$

The number γ is called Euler's constant, or the Euler-Mascheroni constant and has value

$$\gamma = 0.5772 \ 15664 \ 90153 \ 28606 \ 06512 \ 09008 \dots$$

It is currently not known whether γ is even rational or not, let alone algebraic or transcendental.

Exercise 1.1.1. Use the above definition and Mathematica or Maple to find the smallest value of n for which γ is correct to four decimal places. Later, we will develop a better way to get accurate approximations of γ .

Example 1.1.2 (The Riemann Zeta Function). $f(x) = 1/x^s$, s > 1. Now the theorem gives

$$\sum_{k=1}^{n} \frac{1}{k^s} = \frac{1}{s-1} \left(1 - \frac{1}{n^{s-1}} \right) + C_n(s)$$

where $0 < C_n(s) < 1$. Let $n \to \infty$, giving

$$\sum_{k=1}^{\infty} \frac{1}{k^s} = \frac{1}{s-1} + C(s)$$

with 0 < C(s) < 1. The summation is the real part of the Riemann zeta function, $\zeta(s)$, a function with many interesting properties, most of which involve its continuation into the complex plane. However, for the real part we get that

$$\zeta(s) = \frac{1}{s-1} + C(s),$$

where 0 < C(s) < 1.

We shall return to both these examples later.

1.2. Fourier Series

Let L > 0 and define the functions $\left\{ \phi_k(x) \right\}_{k=1}^{\infty}$ on [0, L] by

$$\phi_k(x) = \sqrt{\frac{2}{L}} \sin \frac{k\pi x}{L}.$$

Exercise 1.2.1. Verify that these functions satisfy

$$\int_0^L \left| \phi_k(x) \right|^2 dx = 1,$$

and, if $j \neq k$,

$$\int_0^L \phi_j(x) \, \phi_k(x) \, dx = 0.$$

If these two conditions are satisfied, we call $\{\phi_k(x)\}_{k=1}^{\infty}$ an orthonormal set over [0, L].

Now let f be defined on [0, L], and assume that $\int_0^L f(x) dx$ and $\int_0^L |f(x)|^2 dx$ both exist. Define the Fourier coefficients of f by

$$a_k = \int_0^L f(x) \,\phi_k(x) \,dx.$$

We want to approximate f(x) by a linear combination of a finite subset of the above orthonormal set.

Exercise 1.2.2. Show that, for any positive integer n,

$$\int_{0}^{L} \left| f(x) - \sum_{k=1}^{n} c_{k} \phi_{k}(x) \right|^{2} dx = \int_{0}^{L} \left| f(x) \right|^{2} dx - \sum_{k=1}^{n} \left| a_{k} \right|^{2} + \sum_{k=1}^{n} \left| c_{k} - a_{k} \right|^{2},$$

and that the left side of this expression is a minimum when $c_k = a_k$, k = 1, 2, ..., n. Note that this is a least squares problem.

So, $\int_0^L \left| f(x) - \sum_{k=1}^n a_k \phi_k(x) \right|^2 dx = \int_0^L \left| f(x) \right|^2 dx - \sum_{k=1}^n \left| a_k \right|^2$, and, since the left side cannot be negative, $\sum_{k=1}^n \left| a_k \right|^2 \le \int_0^L \left| f(x) \right|^2 dx.$

Since this inequality is true for all n, we have Bessel's Inequality:

$$\sum_{k=1}^{\infty} \left| a_k \right|^2 \le \int_0^L \left| f(x) \right|^2 dx.$$

Notice that the important thing about the set $\{\phi_k(x)\}\$ was that it was an orthonormal set. The specific sine functions were not the main idea. Given an orthonormal set and a function f, we call $\sum_{1}^{\infty} a_k \phi_k(x)$ the *Fourier series* of f. For our purposes, the most important orthonormal sets are those for which

$$\lim_{n \to \infty} \int_0^L \left| f(x) - \sum_{k=1}^n a_k \phi_k(x) \right|^2 dx = 0.$$

Orthonormal sets with this property are *complete*. Some examples of complete orthonormal sets follow. The first two are defined on [0, L] and the third one on [-L, L].

$$\left\{\sqrt{\frac{2}{L}}\sin\frac{k\pi x}{L}\right\}_{k=1}^{\infty} \tag{ON1}$$

$$\left\{\sqrt{\frac{1}{L}}, \sqrt{\frac{2}{L}}\cos\frac{\pi x}{L}, \sqrt{\frac{2}{L}}\cos\frac{2\pi x}{L}, \ldots\right\}$$
(ON2)

$$\left\{\sqrt{\frac{1}{2L}}, \sqrt{\frac{1}{L}}\cos\frac{\pi x}{L}, \sqrt{\frac{1}{L}}\sin\frac{\pi x}{L}, \sqrt{\frac{1}{L}}\cos\frac{2\pi x}{L}, \sqrt{\frac{1}{L}}\sin\frac{2\pi x}{L}, \ldots\right\}$$
(ON3)

There are other complete orthonormal sets, some of which we will see later.

For a given orthonormal set, the Fourier series $\sum_{k=1}^{\infty} a_k \phi_k(x)$ is equal to f(x) on $-\infty < x < \infty$ for periodic functions f with period 2L provided

(1) f is bounded and piecewise monotone on [-L, L],

(2)
$$\lim_{h \to 0} \frac{f(x+h) + f(x-h)}{2} = f(x),$$

- (3) f is odd when (ON1) is the orthonormal set,
- (4) f is even when (ON2) is the orthonormal set.

1.3. Bernoulli Functions and Numbers

The Bernoulli functions, $B_0(x), B_1(x), B_2(x), \ldots$, satisfy the following conditions on $-\infty < x < \infty$:

$$B_0(x) = 1$$

$$B'_n(x) = B_{n-1}(x), \ n = 1, 2, 3, \dots *$$

$$\int_0^1 B_n(x) \, dx = 0, \ n = 1, 2, 3, \dots$$

$$B_n(x+1) = B_n(x), \ n = 1, 2, 3, \dots$$

Exercise 1.3.1. Show that there exist constants B_0, B_1, B_2, \ldots such that for 0 < x < 1

$$B_0(x) = \frac{B_0}{0!0!}$$

$$B_1(x) = \frac{B_0 x}{0!1!} + \frac{B_1}{1!0!}$$

$$B_2(x) = \frac{B_0 x^2}{0!2!} + \frac{B_1 x}{1!1!} + \frac{B_2}{2!0!}$$

$$B_3(x) = \frac{B_0 x^3}{0!3!} + \frac{B_1 x^2}{1!2!} + \frac{B_2 x}{2!1!} + \frac{B_3}{3!0!}$$
etc.

Exercise 1.3.2. Show that , when $n \ge 2$, $B_n = n! B_n(0)$

Exercise 1.3.3. Show that on (0, 1),

$$0!B_0(x) = B_0$$

^{*} Except when n = 1 or 2 and x is an integer.

$$1!B_1(x) = B_0 x + B_1$$

$$2!B_2(x) = B_0 x^2 + 2B_1 x + B_2$$

$$3!B_3(x) = B_0 x^3 + 3B_1 x^2 + 3B_2 x + B_3$$

etc.

Some authors define the Bernoulli polynomials (on $(-\infty, \infty)$) to be the right hand sides of the above equations. If, in the future, you encounter Bernoulli functions or polynomials, be sure to check what is intended by a particular author.

Exercise 1.3.4. Show that for $n \ge 2$, $B_n(1) = B_n(0)$.

Exercise 1.3.5. Compute B_n for n = 0, 1, 2, 3, ..., 12.

Exercise 1.3.6. Show that $B_1(x) = x - \lfloor x \rfloor - 1/2$ for $-\infty < x < \infty$ and x not an integer. [Note: $\lfloor x \rfloor$ is the greatest integer less than or equal to x.]

Since $B_1(x) = x - \frac{1}{2}$ on (0, 1) and is an odd function on (-1, 1) (do you see why?) we can expand it in Fourier series using (ON1) with L = 1. The Fourier coefficients are

$$a_k = \sqrt{2} \int_0^1 (x - \frac{1}{2}) \sin(k\pi x) \, dx = -\frac{\sqrt{2}}{k\pi} \left(\frac{1 + (-1)^k}{2}\right).$$

Thus, $a_k = 0$ if k is odd, and $a_k = -\frac{\sqrt{2}}{k\pi}$ if k is even. This gives

$$B_1(x) = -2\sum_{k=1}^{\infty} \frac{\sin(2k\pi x)}{2k\pi} = -\frac{2}{2\pi}\sum_{k=1}^{\infty} \frac{\sin(2k\pi x)}{k}$$

Integrate term by term and use the fact that $B'_2(x) = B_1(x)$ to get

$$B_2(x) = \frac{2}{(2\pi)^2} \sum_{k=1}^{\infty} \frac{\cos(2k\pi x)}{k^2}.$$

Similarly,

$$B_{2n+1}(x) = (-1)^{n+1} \frac{2}{(2\pi)^{2n+1}} \sum_{k=1}^{\infty} \frac{\sin(2k\pi x)}{k^{2n+1}},$$

and

$$B_{2n}(x) = (-1)^{n+1} \frac{2}{(2\pi)^{2n}} \sum_{k=1}^{\infty} \frac{\cos(2k\pi x)}{k^{2n}}$$

Exercise 1.3.7. The work above with the Fourier series was done formally, without worrying about whether the results were meaningful. Prove that the formulas for $B_2(x)$, $B_{2n+1}(x)$, and $B_{2n}(x)$ are correct by showing that the series converge and satisfy the properties of the Bernoulli functions.

Exercise 1.3.8. Use Mathematica or Maple to plot graphs of $B_1(x)$, $B_2(x)$, and $B_3(x)$ on $0 \le x \le 4$. Also graph the Fourier approximations of $B_1(x)$, $B_2(x)$, and $B_3(x)$ using n = 2, n = 5, and n = 50.

Example 1.3.1 (Some Values of the Riemann Zeta Function). Since $B_n(0) = B_n/n!$, we have $B_2(0) = 1/12$. Therefore,

$$\frac{1}{12} = \frac{2}{(2\pi)^2} \left(\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots \right)$$

and so we get

$$\zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{(2\pi)^2}{(12)(2)} = \frac{\pi^2}{6}.$$

Exercise 1.3.9. Find $\zeta(4)$, $\zeta(6)$, and $\zeta(8)$.

Van der Pol used to say that those who know these formulas are mathematicians and those who do not are not.

1.4. The Euler-Maclaurin Formulas

Let p and q be integers and assume f is differentiable (as many times as needed) for $p \le x \le q$. Let k be an integer, $p \le k < q$. Then

$$\int_{k}^{k+1} f(x) \, dx = \int_{k}^{k+1} f(x) B_0(x) \, dx = \lim_{\epsilon \to 0} \int_{k+\epsilon}^{k+1-\epsilon} f(x) B_1'(x) \, dx.$$

Integration by parts gives

$$\int_{k}^{k+1} f(x) \, dx = \lim_{\epsilon \to 0} \left[f(x)B_1(x) \right]_{k+\epsilon}^{k+1-\epsilon} - \int_{k+\epsilon}^{k+1-\epsilon} f'(x)B_1(x) \, dx \right] = \frac{f(k) + f(k+1)}{2} - \int_{k}^{k+1} f'(x)B_1(x) \, dx.$$

Adding between p and q, we get

$$\int_{p}^{q} f(x) \, dx = \sum_{k=p}^{q-1} \int_{k}^{k+1} f(x) \, dx = \sum_{k=p}^{q} f(k) - \frac{f(p) + f(q)}{2} - \int_{p}^{q} f'(x) B_{1}(x) \, dx$$

A slight rearrangement produces the first Euler-Maclaurin Formula:

$$\sum_{k=p}^{q} f(k) = \int_{p}^{q} f(x) \, dx + \frac{f(p) + f(q)}{2} + \int_{p}^{q} f'(x) B_{1}(x) \, dx. \tag{EM1}$$

This is a useful formula for estimating sums.

Additional Euler-Maclaurin formulas can be obtained by further integration by parts.

Exercise 1.4.1. Derive the following: (Remember that $B_j = 0$ if $j \ge 3$ and odd.)

$$\sum_{k=p}^{q} f(k) = \int_{p}^{q} f(x) \, dx + \frac{f(p) + f(q)}{2} + \frac{f'(q) - f'(p)}{12} - \int_{p}^{q} f''(x) B_{2}(x) \, dx. \tag{EM2}$$

$$\sum_{k=p}^{q} f(k) = \int_{p}^{q} f(x) \, dx + \frac{f(p) + f(q)}{2} + \frac{f'(q) - f'(p)}{12} + \int_{p}^{q} f'''(x) B_{3}(x) \, dx. \tag{EM3}$$

$$\sum_{k=p}^{q} f(k) = \int_{p}^{q} f(x) \, dx + \frac{f(p) + f(q)}{2} + \sum_{j=2}^{m} \left(f^{(j-1)}(q) - f^{(j-1)}(p) \right) \frac{B_{j}}{j!} + (-1)^{m+1} \int_{p}^{q} f^{(m)}(x) B_{m}(x) \, dx.$$
(EMm)

Example 1.4.1. In (EM3), let $f(x) = x^2$, p = 0, and q = n. Since $f^m(x) = 0$ for $m \ge 3$ we get

$$\sum_{k=0}^{n} k^2 = \int_0^n x^2 \, dx + \frac{0+n^2}{2} + \frac{2n-0}{12}$$
$$= \frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6}$$
$$= \frac{n(n+1)(2n+1)}{6}.$$

This is much neater than mathematical induction.

Example 1.4.2. In (EMm), let p = 0, q = n, m = s, and $f(x) = x^s$, where s is a positive integer other than 1. Then

$$\sum_{k=0}^{n} k^{s} = \frac{n^{s+1}}{s+1} + \frac{n^{s}}{2} + \sum_{j=2}^{s} \frac{f^{(j-1)}(n)B_{j}}{j!} + (-1)^{s+1} \int_{0}^{n} s!B_{s}(x) \, dx$$
$$= \frac{n^{s+1}}{s+1} + \frac{n^{s}}{2} + \sum_{j=2}^{s} \frac{s(s-1)\dots(s-j+2)n^{s-j+1}B_{j}}{j!}$$
$$= n^{s} + \frac{1}{s+1} \sum_{j=0}^{s} {s+1 \choose j} n^{s+1-j}B_{j}$$

Exercise 1.4.2. Fill in the details in the last example and get formulas for $\sum_{k=1}^{n} k^3$ and $\sum_{k=1}^{n} k^4$.

In some cases, as $x \to \infty$, $f^{(m)}(x) \to 0$ for *m* large enough. When the integral in the following expression converges, we can define a constant C_p by

$$C_p = \frac{f(p)}{2} - \sum_{j=2}^m \frac{f^{(j-1)}(p)B_j}{j!} + (-1)^{m+1} \int_p^\infty f^{(m)}(x)B_m(x)\,dx$$

Exercise 1.4.3. Show that C_p is independent of m by showing that the right side is unchanged when m is replaced by m + 1. Integration by parts helps.

Subtract the C_p equation from (EMm) to get

$$\sum_{k=p}^{q} f(k) = C_p + \int_p^q f(x) \, dx + \frac{f(q)}{2} + \sum_{j=2}^{m} \frac{f^{(j-1)}(q)B_j}{j!} + (-1)^m \int_q^\infty f^{(m)}(x)B_m(x) \, dx$$

We solve for C_p to get

$$C_p = \sum_{k=p}^{q} f(k) - \int_p^q f(x) \, dx - \frac{f(q)}{2} - \sum_{j=2}^{m} \frac{f^{(j-1)}(q)B_j}{j!} - (-1)^m \int_q^\infty f^{(m)}(x)B_m(x) \, dx.$$

Example 1.4.3 (Euler's Constant). Let f(x) = 1/x, p = 1, q = n, and (at first) m = 3. Then the penultimate formula involving C_p , now C_1 , gives

$$\sum_{k=1}^{n} \frac{1}{k} = C_1 + \int_1^n \frac{1}{x} \, dx + \frac{1}{2n} + \sum_{j=2}^{3} \frac{f^{(j-1)}(n)B_j}{j!} + (-1)^3 \int_n^\infty f^{(3)}(x)B_3(x) \, dx$$
$$= \log n + C_1 + \frac{1}{2n} - \frac{B_2}{n^2 2!} - \int_n^\infty -6x^{-4}B_3(x) \, dx$$
$$= \log n + \gamma + \frac{1}{2n} - \frac{1}{12n^2} + 6 \int_n^\infty \frac{B_3(x)}{x^4} \, dx.$$

Exercise 1.4.4. Fill in the details to this point in the example, especially why γ can replace C_1 . Then, assuming γ is known, obtain bounds on the last integral and approximate $\sum_{k=1}^{n} \frac{1}{k}$ for n = 10, 50, and 100. How close are your estimates?

(Continuation of Example 1.4.3). If now q = 10, and m is arbitrary, the last formula for $C_1 (= \gamma)$ gives

$$\gamma = \sum_{k=1}^{10} \frac{1}{k} - \log 10 - \frac{1}{20} - \sum_{j=2}^{m} \frac{(-1)^{j-1}(j-1)!B_j}{10^j j!} - (-1)^m \int_{10}^{\infty} \frac{(-1)^m m!B_m(x)}{x^{m+1}} dx$$
$$= \sum_{k=1}^{10} \frac{1}{k} - \log 10 - \frac{1}{20} + \sum_{j=2}^{m} \frac{B_j}{10^j j} - \int_{10}^{\infty} \frac{m!B_m(x)}{x^{m+1}} dx.$$

Exercise 1.4.5. Prove that if m = 10 in the last formula for γ , then the integral is less than 10^{-12} , and so the other terms can be used to compute γ correct to at least ten decimal places. Do this computation. To best appreciate the formula, do the computation by hand, assuming that you know log 10 to a sufficient number of places (you have already found exact values for the Bernoulli numbers you need). (log $10 = 2.3025\ 85092\ 994\ldots$)

1.5 The Stirling Formulas

This section is a (long) derivation of the Stirling formulas for $\log(z!)$ and z!. As you work through the section, think about how the steps fit together.

Exercise 1.5.1. Let p = 1, q = n, $m \ge 2$, and $f(x) = \log(z + x)$ for z > -1. Use (EMm) to get

$$\sum_{k=1}^{n} \log \left(z+k\right) = \left(z+n+\frac{1}{2}\right) \log \left(z+n\right) - \left(z+\frac{1}{2}\right) \log \left(z+1\right) - n + 1$$
$$+ \sum_{j=2}^{m} \frac{B_j}{j(j-1)} \left(\frac{1}{(z+n)^{j-1}} - \frac{1}{(z+1)^{j-1}}\right)$$
$$+ \int_1^n \frac{(m-1)! B_m(x)}{(z+x)^m} dx.$$
(1.5.1)

Put z = 0 in (1.5.1) to get

$$\log(n!) = (n + \frac{1}{2})\log n - n + 1 + \sum_{j=2}^{m} \frac{B_j}{j(j-1)} \left(\frac{1}{n^{j-1}} - 1\right) + \int_1^n \frac{(m-1)!B_m(x)}{x^m} \, dx. \tag{1.5.2}$$

In the next chapter we will see how Wallis' formulas, (see also A&S, 6.1.49)

$$\int_0^{\pi/2} \sin^{2n} x \, dx = \frac{(2n)!}{2^{2n} (n!)^2} \frac{\pi}{2},$$
$$\int_0^{\pi/2} \sin^{2n+1} x \, dx = \frac{2^{2n} (n!)^2}{(2n)!} \frac{1}{2n+1},$$

can be used to prove that

$$\lim_{n \to \infty} \frac{(2n)! \sqrt{n\pi}}{2^{2n} (n!)^2} = 1.$$
(1.5.3)

Accept this result for now - you will have a chance to prove it later! From (1.5.3) we get

$$\lim_{n \to \infty} \left[\log \left((2n)! \right) + \log \sqrt{n\pi} - 2n \log 2 - 2 \log (n!) \right] = 0.$$
 (1.5.4)

Substitute for $\log((2n)!)$ and $\log(n!)$ in (1.5.4) using (1.5.2) and simplify to get

$$\lim_{n \to \infty} \left[\frac{1}{2} \log 2 - 1 + \frac{1}{2} \log \pi + \sum_{j=2}^{m} \frac{B_j}{j(j-1)} \left(\frac{1}{(2n)^{j-1}} - \frac{2}{n^{j-1}} + 1 \right) + \int_1^{2n} \frac{(m-1)! B_m(x)}{x^m} \, dx - 2 \int_1^n \frac{(m-1)! B_m(x)}{x^m} \, dx \right] = 0.$$

More simplification yields

$$\log\sqrt{2\pi} - 1 + \sum_{j=2}^{m} \frac{B_j}{j(j-1)} - \int_1^\infty \frac{(m-1)!B_m(x)}{x^m} \, dx = 0 \tag{1.5.5}$$

Exercise 1.5.2. Show that

$$\int_{1}^{n} \frac{(m-1)! B_m(x)}{x^m} \, dx - \int_{1}^{\infty} \frac{(m-1)! B_m(x)}{x^m} \, dx = -\int_{0}^{\infty} \frac{(m-1)! B_m(x)}{(n+x)^m} \, dx \tag{1.5.6}$$

Add (1.5.5) to (1.5.2), and use (1.5.6) to get

$$\log\left(n!\right) = \log\sqrt{2\pi} + \left(n + \frac{1}{2}\right)\log n - n + \sum_{j=2}^{m} \frac{B_j}{j(j-1)n^{j-1}} - \int_0^\infty \frac{(m-1)!B_m(x)}{(n+x)^m} \, dx. \tag{1.5.7}$$

Clearly, for integers z > 0,

$$z! = \lim_{n \to \infty} 1 \cdot 2 \cdot 3 \cdot \ldots \cdot z$$
$$= \lim_{n \to \infty} \frac{1 \cdot 2 \cdot 3 \cdot \ldots \cdot z(z+1)(\dots(z+n))}{(z+1)\dots(z+n)}$$
$$= \lim_{n \to \infty} \left[\left(\frac{n! n^z}{(z+1)\dots(z+n)} \right) \left(\frac{n+1}{n} \right) \left(\frac{n+2}{n} \right) \dots \left(\frac{n+z}{n} \right) \right].$$

Since each of the last factors has limit one, we have (see A&S, 6.1.2), for z > -1,

$$z! = \lim_{n \to \infty} \frac{n! n^z}{(z+1)(z+2)\dots(z+n)}.$$
 (1.5.8)

Taking logs,

$$\log(z!) = \lim_{n \to \infty} \left[\log(n!) + z \log n - \sum_{k=1}^{n} \log(z+k) \right].$$
(1.5.9)

Substitute from (1.5.7) and (1.5.1) to get

$$\log (z!) = \log \sqrt{2\pi} + (z + \frac{1}{2}) \log (z + 1) - (z + 1) + \sum_{j=2}^{m} \frac{B_j}{j(j-1)(z+1)^{j-1}} - \int_1^\infty \frac{(m-1)! B_m(x)}{(z+x)^m} dx.$$
(1.5.10)

Exercise 1.5.3. Show that

$$\lim_{n \to \infty} \left[\left(z + n + \frac{1}{2} \right) \left(\log \left(z + n \right) - \log n \right) \right] = z \tag{1.5.11}$$

and use this fact to get (1.5.10).

If z > 0, add $\log(z+1)$ to both sides of (1.5.10)

$$\log \left((z+1)! \right) = \log \sqrt{2\pi} + (z+\frac{3}{2}) \log (z+1) - (z+1) + \sum_{j=2}^{m} \frac{B_j}{j(j-1)(z+1)^{j-1}} - \int_1^\infty \frac{(m-1)! B_m(x)}{(z+x)^m} \, dx$$

Finally, replace z + 1 by z:

$$\log(z!) = \log\sqrt{2\pi} + (z + \frac{1}{2})\log z - z + \sum_{j=2}^{m} \frac{B_j}{j(j-1)z^{j-1}} - \int_0^\infty \frac{(m-1)!B_m(x)}{(z+x)^m} dx.$$
(1.5.12)

Note that for z = n, (1.5.12) is identical to (1.5.7).

For $z \in \mathbb{C} - \{z \mid \Re(z) \leq 0\}$, everything on the right side of (1.5.12) is analytic. Analytic continuation then makes (1.5.12) valid for all complex z not on the non-positive real axis. To make the notation more compact, let

$$E(z) = \sum_{j=2}^{m} \frac{B_j}{j(j-1)z^{j-1}} - \int_0^\infty \frac{(m-1)!B_m(x)}{(z+x)^m} \, dx,$$
(1.5.13)

so that (1.5.12) becomes

$$\log(z!) = \log\sqrt{2\pi} + (z + \frac{1}{2})\log z - z + E(z), \qquad (1.5.14)$$

or, equivalently,

$$z! = \sqrt{2\pi z} \ z^z e^{-z} e^{E(z)}. \tag{1.5.15}$$

Equations (1.5.14) and (1.5.15) are the *Stirling formulas* for $\log(z!)$ and z!. Equation (1.5.15) can be thought of as *defining z*! when z is not a positive integer. See A&S, 6.1.37 and 6.1.38. The term E(z) is small and can be bounded by simple functions, so the Stirling formulas can be used to estimate z! and $\log(z!)$ quite accurately.

Exercise 1.5.4. For z real and positive, show that

$$0 < E(z) < \frac{1}{12z},$$

and

$$\frac{1}{12z} - \frac{1}{360z^3} < E(z) < \frac{1}{12z} - \frac{1}{360z^3} + \frac{1}{1260z^5}.$$

Exercise 1.5.5. Use the Stirling formulas to estimate 5! and $\log(5!)$ within 3 decimal places, then do the same for 5.5! and $\log(5.5!)$. Think about how you could find these values without a fancy calculator or computer.