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Chapter 2. The Gamma Function

2.1. Definition and Basic Properties

Although we will be most interested in real arguments for the gamma function, the definition is valid for
complex arguments. See Chapter 6 in A&S for more about the gamma function.

Definition 2.1.1. For z a complex number with ℜ(z) > 0, Γ(z) =

∫ ∞

0

e−ttz−1 dt.

Theorem 2.1.1 (Difference Equation). Γ(z + 1) = z Γ(z).

Proof. For the proof we apply integration by parts to the integral in the definition of Γ(z).

Γ(z) =

∫ ∞

0

e−ttz−1 dt =
tze−t

z

]∞

0
+

∫ ∞

0

tze−t

z
dt.

Thus, z Γ(z) =
∫∞
0 e−ttz dt = Γ(z + 1). ♠

Theorem 2.1.2 (Factorial Equivalence). Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

Proof. By direct calculation in the definition, Γ(1) = 1. Repeated use of Theorem 2.1.1 gives Γ(n + 1) =
n! Γ(1) = n!. ♠

Theorem 2.1.3. If x is real and positive, then lim
x→0+

Γ(x) = +∞.

Proof.

Γ(x) >

∫ 1

0

e−ttx−1 dt >
1

e

∫ 1

0

tx−1 dt.

The last integral is an improper integral, so

∫ 1

0

tx−1 dt = lim
ǫ→0+

∫ 1

ǫ

tx−1 dt = lim
ǫ→0+

[

1

x
− ǫx

x

]

=
1

x
.

So, Γ(x) >
1

e x
for x > 0, and thus Γ(x) → ∞ as x→ 0. ♠

The gamma function is often referred to as the “continuous version of the factorial,” or words to that effect.
If we are going to say this, we need to prove that Γ(x) is continuous. The next theorem uses the Weierstrass
M-test for improper integrals, something you should be familiar with for series. The result works similarly
for integrals. (Find your advanced calculus book and review the Weierstrass M-test if necessary.)

Theorem 2.1.4 (Continuity of Γ). The gamma function is continuous for all real positive x.

Proof. Assume x0 > 0 and choose a and b such that 0 < a < x0 < b. Then the integral
∫∞
1 e−ttx−1 dt

converges uniformly on [a, b] by the Weierstrass M-test because
∣

∣e−ttx−1
∣

∣ < e−ttb−1 and
∫∞
1 e−ttb−1 dt

converges.

The integral
∫ 1

0
e−ttx−1 dt is proper for x ∈ [a, b] if a ≥ 1. If 0 < a < 1, then this integral also converges

uniformly by the Weierstrass M-test since
∣

∣e−ttx−1
∣

∣ < ta−1 and
∫ 1

0
ta−1 dt converges.
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Combining these results, we see that the integral defining Γ(x) converges uniformly on [a, b], and the integrand
is continuous in x and t. By an advanced calculus theorem, this makes Γ continuous on [a, b] and thus
continuous at x0. ♠

Exercise 2.1.1. Show that, for x real and positive, lim
x→0+

xΓ(x) = 1.

The domain of Γ(x) can be extended to include values between consecutive negative integers. For n =
1, 2, 3, . . ., and −n < x < −n+ 1, define Γ(x) by

Γ(x) =
Γ(x+ n)

x(x+ 1)(x+ 2) · · · (x+ n− 1)
.

In this way, Γ(x) is defined for all x 6= 0,−1,−2, . . ..

Exercise 2.1.2. Show that Γ(x+ 1) = xΓ(x) for all x 6= 0,−1,−2, . . ..

We know that Γ(x) becomes infinite as x→ 0+ and as x→ ∞, but what happens in between? Differentiating,
we get, for 0 < x <∞,

Γ′(x) =
d

dx

∫ ∞

0

e−ttx−1 dt =

∫ ∞

0

e−ttx−1 log t dt,

Γ′′(x) =

∫ ∞

0

e−ttx−1(log t)2 dt.

Since the integrand in Γ′′(x) is positive for 0 < x < ∞, so is Γ′′(x). Thus, the graph of Γ(x) is concave up
on (0,∞).

The technique used in the proof of the following theorem is one everyone should know.

Theorem 2.1.5.

∫ ∞

0

e−x2

dx =

√
π

2
.

Proof. Consider the following regions in the first quadrant of the plane, shown in Figure 2.

S = {(x, y) | 0 ≤ x ≤ R , 0 ≤ y ≤ R}

D1 = {(x, y) |x ≥ 0, y ≥ 0, x2 + y2 ≤ R2}
D2 = {(x, y) |x ≥ 0, y ≥ 0, x2 + y2 ≤ 2R2}

Clearly,
∫∫

D1

e−x2−y2

dA <

∫∫

S

e−x2−y2

dA <

∫∫

D2

e−x2−y2

dA.

Use polar coordinates on the outside integrals and rectangular coordinates on the middle one to get

∫ π/2

0

∫ R

0

r e−r2dr dθ <

∫ R

0

∫ R

0

e−x2

e−y2

dx dy <

∫ π/2

0

∫

√
2R

0

r e−r2dr dθ,

∫ π/2

0

1− e−R2

2
dθ <

(

∫ R

0

e−x2

dx

)(

∫ R

0

e−y2

dy

)

<

∫ π/2

0

1− e−2R2

2
dθ,

π

4
(1− e−R2

) <

(

∫ R

0

e−x2

dx

)2

<
π

4
(1− e−2R2

).
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Figure 2.1.1

Taking limits as R→ ∞ yields
(
∫ ∞

0

e−x2

dx

)2

=
π

4
,

and so

∫ ∞

0

e−x2

dx =

√
π

2
. ♠

Corollary 2.1.5. Γ(12 ) =
√
π.

Proof. Γ(12 ) =
∫∞
0 e−tt−1/2dt. Let t = y2 to get

Γ(
1

2
) =

∫ ∞

0

e−y2

y−12y dy = 2

∫ ∞

0

e−y2

dy =
√
π. ♠

Exercise 2.1.3. Prove Γ(n+
1

2
) =

(2n)!
√
π

22nn!
.

Exercise 2.1.4. For 0 < x <∞, prove Γ(x) = 2

∫ ∞

0

e−t2t2x−1dt.

Exercise 2.1.5. Show that f(x) =

∫ ∞

0

e−t2 cos (xt) dt =

√
π

2
e−x2/4. [Hint: Find and solve a differential

equation satisfied by f .]

Exercise 2.1.6. Find all positive numbers T such that
∫ T

0 x− log x dx =
∫∞
T x− log x dx, and evaluate the

integrals.

2.2. The Beta Function, Wallis’ Product

Another special function defined by an improper integral and related to the gamma function is the beta

function, denoted B(x, y).

13



Definition 2.2.1. B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt, for x > 0, y > 0.

If both x > 1 and y > 1, then the beta function is given by a proper integral and convergence is not a
question. However, if 0 < x < 1 or 0 < y < 1, then the integral is improper. Convince yourself that in these
cases the integral converges, making the beta function well-defined. We now develop some of the properties
of B(x, y). Unless otherwise stated, we assume x and y are in the first quadrant.

Theorem 2.2.1 (Symmetry). B(x, y) = B(y, x).

Proof. In the definition, make the change of variable u = 1− t. ♠

Theorem 2.2.2. B(x, y) = 2

∫ π/2

0

(sin t)2x−1(cos t)2y−1dt.

Proof. Make the change of variable t = sin2 u. ♠

Theorem 2.2.3. B(x, y) =

∫ ∞

0

tx−1

(1 + t)x+y
dt.

Proof. Let t = u
1+u . ♠

Exercise 2.2.1. Fill in the details in the proofs of Theorems 2.2.1 - 2.2.3.

Theorem 2.2.4 (Relation to the Gamma Function). B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
.

Proof. The proof uses the method employed in the proof of Theorem 2.1.5. (When a trick is used twice

it becomes a method!) From Exercise 2.1.4, we know Γ(x) = 2

∫ ∞

0

e−t2t2x−1dt, so consider the function

given by G(t, u) = t2x−1u2y−1e−t2−u2

. Integrate G (with respect to t and u) over the three regions shown
in Figure 2, using polar coordinates in the quarter-circles as before. The inequalities become

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ

∫ R

0

r2x+2y−1e−r2dr

<

∫ R

0

t2x−1e−t2dt

∫ R

0

u2y−1e−u2

du

<

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ

∫

√
2R

0

r2x+2y−1e−r2dr.

As R → ∞, we see from Exercise 2.1.4 and Theorem 2.2.2 that the center term approaches Γ(x) Γ(y)/4, and

the outside terms approach B(x, y) Γ(x + y)/4. Thus, B(x, y) =
Γ(x) Γ(y)

Γ(x+ y)
. ♠

Corollary 2.2.4. B(12 ,
1
2 ) = π.

Exercise 2.2.2 (Dirichlet Integrals 1). Show that

∫∫∫

V

xα−1yβ−1zγ−1dV =
Γ(α2 ) Γ(

β
2 ) Γ(

γ
2 )

8 Γ(α+β+γ
2 + 1)

,
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where V is the region in the first octant bounded by the coordinate planes and the sphere x2 + y2 + z2 = 1.
[Let x2 = u, y2 = v, and z2 = w to transform the region of integration into a tetrahedron. After another
substitution later, recognize the beta function integral so you can use Theorem 2.2.4.]

Exercise 2.2.3 (Dirichlet Integrals 2). Show that

∫∫∫

V

xα−1yβ−1zγ−1dV =
aαbβcγ

pqr

Γ(αp ) Γ(
β
q ) Γ(

γ
r )

Γ(1 + α
p + β

q + γ
r )
,

where V is the region in the first octant bounded by the coordinate planes and
(

x
a

)p
+
(

y
b

)q
+
(

z
c

)r
= 1.

Exercise 2.2.4. Prove Wallis’ Formulas:

∫ π/2

0

sin2n x dx =
(2n)!

22n(n!)2
π

2
=

√
π Γ(n+ 1

2 )

2(n!)
,

∫ π/2

0

sin2n+1 x dx =
22n(n!)2

(2n)!

1

2n+ 1
=

√
π n!

2 Γ(n+ 3
2 )
.

[Use Exercise 2.1.3, Theorem 2.2.2, and Theorem 2.2.4.]

An interesting fact about Wallis’ formulas is that (2n)!
22n(n!)2 is the probability of getting exactly n heads when

2n coins are tossed.

Exercise 2.2.5. An excellent aproximation to the probability of getting exactly n heads when 2n coins are
tossed is given by 1√

nπ
. Use Mathematica or Maple to convince yourself that this is true. (The proof will

come later.)

Theorem 2.2.5 (Wallis’ Product).
π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · 2k

2k − 1
· 2k

2k + 1
· · ·.

Proof. Let Pn be the partial product of the first n factors on the right side. We must show that lim
n→∞

Pn =
π

2
.

From Exercise 2.2.4,
∫ π/2

0 sin2n x dx
∫ π/2

0 sin2n+1 x dx
=

Γ(n+ 1
2 )

n!
· Γ(n+ 3

2 )

n!
.

By Theorem 2.1.1 and some algebra,

Γ(n+ 1
2 )

n!
=

2n− 1

2n
· 2n− 3

2(n− 1)
· · · 3

2 · 2 · 1

2 · 1
√
π,

Γ(n+ 3
2 )

n!
=

2n+ 1

2n
· 2n− 1

2(n− 1)
· · · 3

2 · 1 · 1
2

√
π.

So the quotient above is
∫ π/2

0
sin2n x dx

∫ π/2

0
sin2n+1 x dx

=
1

P2n
· π
2
.

Again using Exercise 2.2.4, we have

∫ π/2

0 sin2n+1 x dx
∫ π/2

0 sin2n−1 x dx
=

2n

2n+ 1
,
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or
∫ π/2

0

sin2n−1 x dx =
2n+ 1

2n

∫ π/2

0

sin2n+1 x dx.

Since sinx is increasing and 0 ≤ sinx ≤ 1 on [0, π/2],

0 <

∫ π/2

0

sin2n+1 x dx <

∫ π/2

0

sin2n x dx <

∫ π/2

0

sin2n−1 x dx.

Divide by
∫ π/2

0
sin2n+1 x dx to get

1 <

∫ π/2

0
sin2n x dx

∫ π/2

0
sin2n+1 x dx

<
2n+ 1

2n
.

Clearly, as n→ ∞, the middle term → 1, giving us

lim
n→∞

1

P2n
· π
2
= 1 and so lim

n→∞
P2n =

π

2
.

Since lim
n→∞

P2n+1 = lim
n→∞

2n+ 2

2n+ 1
P2n =

π

2
, the proof is complete. ♠

Corollary 2.2.5. lim
n→∞

(2n)!
√
nπ

22n(n!)2
= 1.

Exercise 2.2.6 (Progress as Promised). Prove Corollary 2.2.5.

Exercise 2.2.7. Prove that the approximation in Exercise 2.2.5 is correct by showing that

(2n)!

22n(n!)2
=

√

1− 1− θn
2n+ 1

· 1√
nπ

for some θn satisfying 0 < θn < 1. [The θn comes from using the Mean Value Theorem on one of the
inequalities in the proof of Theorem 2.2.5.]

2.3. The Reflection Formula

First, a Fourier series warm-up.

Exercise 2.3.1. Expand f(x) = |x| for −π ≤ x ≤ π, and f(x+2π) = f(x) in Fourier series. Use this result
to show that

π2

8
=

∞
∑

k=1

1

(2k − 1)2
and

π2

24
=

∞
∑

k=1

1

(2k)2
.

Now that you have Fourier series back at the top level in your mind, the next exercise will be needed soon.

Exercise 2.3.2. Expand f(x) = cos (zx) for −π ≤ x ≤ π, and f(x + 2π) = f(x) in Fourier series (treat z
as a constant) to get

cos (zx) =
2z

π
sin (π z)

[

1

2z2
+

∞
∑

k=1

(−1)k cos (kx)

z2 − k2

]

.

The following theorem is stated in terms of complex z, but no arguments in the proof require complex
analysis, so feel free to think of the z as a real number.
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Theorem 2.3.1 (The Reflection Formula). Γ(z)Γ(1− z) = π csc (π z) for 0 < ℜ(z) < 1.

Proof. Let x = 0 in the series of Exercise 2.3.2 to get

π csc (π z) = 2z

[

1

2z2
− 1

z2 − 12
+

1

z2 − 22
− · · ·

]

.

For 0 < ℜ(z) < 1, Theorems 2.2.3 and 2.2.4 give

Γ(z)Γ(1− z) = B(z, 1− z) =

∫ ∞

0

xz−1

1 + x
dx

=

∫ 1

0

xz−1

1 + x
dx+

∫ ∞

1

xz−1

1 + x
dx

=

∫ 1

0

xz−1

1 + x
dx+

∫ 0

1

−t−z

1 + t
dt

=

∫ 1

0

xz−1

1 + x
dx+

∫ 1

0

x−z

1 + x
dx

=

∫ 1

0

xz−1dx+

∫ 1

0

x−z − xz

1 + x
dx

=
1

z
+

∫ 1

0

(x−z − xz)(1− x+ x2 − x3 + · · ·) dx

=
1

z
+

∫ 1

0

∞
∑

k=0

(−1)k(x−z+k − xz+k) dx

=
1

z
−
(

1

1 + z
− 1

1− z

)

+

(

1

2 + z
− 1

2− z

)

− · · ·

= 2z

[

1

2z2
− 1

z2 − 12
+

1

z2 − 22
− · · ·

]

.

The proof is complete provided we can justify the term-by-term integration. Denote by Sn(x) and Rn(x) the

nth partial sum and remainder of the series

∞
∑

k=0

(−1)kxk(x−z − xz). We need to show that
∫ 1

0 Rn(x) dx →

0 as n→ ∞.
∫ 1

0

|Rn(x)| dx =

∫ 1

0

xn+1(x−z − xz)

1 + x
dx =

∫ 1

0

xn
[

x1−z − x1+z

1 + x

]

dx.

Since 0 < z < 1, the function x1−z−x1+z

1+x is continuous in x on [0, 1], and so there is a number M , such that

x1−z − x1+z

1 + x
≤M for all z ∈ (0, 1). Thus,

∫ 1

0

|Rn(x)| dx ≤
∫ 1

0

Mxn dx =
M

n+ 1
.

This completes the proof. ♠

Example 2.3.1 (Another Route to Wallis’ Product). Let x = π in the series of Exercise 2.3.2 to get

cos (π z) =
2z sin (π z)

π

[

1

2z2
+

1

z2 − 12
+

1

z2 − 22
+

1

z2 − 32
+ · · ·

]

,
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π cot (π z)− 1

z
=

∞
∑

k=1

2z

z2 − k2
.

Integrate both sides with respect to z from 0 to x, −1 < x < 1. (This time term-by-term integration is valid
because the series converges uniformly for |z| < 1.)

∫ x

0

(

π cos (π z)

sin (π z)
− 1

z

)

dz =
∞
∑

k=1

log |z2 − k2|
]x

0

log (sin (π x))− log x− lim
z→0

[log (sin (π z))− log z] =

∞
∑

k=1

log

(

k2 − x2

k2

)

log

(

sin (π x)

π x

)

=
∞
∑

k=1

log

(

1− x2

k2

)

.

This is equivalent to

sin (π x) = π x

∞
∏

k=1

(

1− x2

k2

)

for − 1 < x < 1.

Let x = 1
2 and factor the term in the product to get

1 =
π

2

[(

1

2
· 3
2

)(

3

4
· 5
4

)(

5

6
· 7
6

)

· · ·
]

or

π

2
=

2

1
· 2
3
· 4
3
· 4
5
· 6
5
· 6
7
· · · 2k

2k − 1
· 2k

2k + 1
· · ·

In most of the following exercises use Mathematica or Maple to do graphs and numerical work. Proofs are,
of course, still your responsibility. If you use Mathematica or Maple to do an integral whose value is given
in terms of a special function, think of the result as a theorem to prove.

Exercise 2.3.3. Evaluate

∫ ∞

0

e−st
√
t dt, which gives the Laplace transform of

√
t.

Exercise 2.3.4. Evaluate

∫ 1

0

(

log (
1

t
)

)x−1

dt and

∫ 1

0

(log t)
x−1

dt. When is the second one real-valued?

Exercise 2.3.5. Plot the graph of y = 1/Γ(x) for −4 ≤ x ≤ 10. Using the computer, find the first 8 terms
in the Taylor series expansion of 1/Γ(x) around x = 0. Do the first 8 terms give a good approximation of the
value of Γ(5)? How about Γ(2)? Compare with the values from Stirling’s formula, and revise, if necessary,
your opinion of old Stirling.

Exercise 2.3.6. Show that B(x, x) = 21−2xB(x, 12 ) for 0 < x < ∞. Plot the graph of y = B(x, x) and
y = 21−2xB(x, 12 ) on (0, 10].

Exercise 2.3.7. Show that
√
π Γ(2x) = 22x−1Γ(x) Γ(x + 1

2 ), for 0 < x <∞. [Exercise 2.3.6 should help.]

Exercise 2.3.8. Evaluate f(t) =

∫ π/2

0

(sin (2x))2t−1dx, and plot the graph of f on (0, 10].
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Exercise 2.3.9. Plot the graph of x2/3 + y2/3 = 1, and find the area inside the curve. [Parameterize the
curve in terms of trig functions.]

2.4. Stirling and Weierstrass

It is a good idea to have a feeling for the order of magnitude of n! and Γ(x), especially in comparison with
other things that “get real big real fast”. The following theorem, due to Stirling, addresses this topic.

Theorem 2.4.1 (Stirling). lim
n→∞

(

n
e

)n √
2π n

n!
= 1.

Proof. Let an =
n!

(

n
e

)n √
n
. We will show that an →

√
2π as n→ ∞. In Corollary 2.2.5, we can write

(n!)222n

(2n)!
√
n
=

a2n√
2a2n

=
(n!)2

(

2n
e

)2n √
2n

√
2
(

n
e

)2n
n(2n)!

.

Assuming lim
n→∞

an = r 6= 0, Corollary 2.2.5 gives

√
π =

r2

r
√
2
or r =

√
2π.

The proof will be complete when we (you!) show that the sequence {an} has a nonzero limit. This is done
in an exercise. ♠

Exercise 2.4.1. Show log

(

1 +
1

n

)

>
2

2n+ 1
for

n = 1, 2, 3, , . . .. [Hint: See figure.]

n n+1/2 n+1

y=1/x

Exercise 2.4.2. For the sequence {an} in Theorem 2.4.1 prove that {an} is a bounded monotonic sequence,
and thus has a limit. Further, show that this limit is ≥ 1. [Hint: See figure below.]

1 3/2 2 5/2 n-3/2 n-1 n-1/2 n

2

y = log x

We now prepare for Weierstrass’ infinite product representation of the gamma function, which involves
Euler’s constant, γ.
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Lemma 2.4.1. For 0 ≤ x ≤ 1, lim
n→∞

Γ(x+ n)

Γ(n) nx
= 1.

Proof. Since x ≥ 0 and x− 1 ≤ 0, if 0 ≤ t ≤ n, we get tx ≤ nx and nx−1 ≤ tx−1 so that

nx−1

∫ n

0

e−ttndt ≤
∫ n

0

e−ttn+x−1dt ≤ nx

∫ n

0

e−ttn−1dt. (2.4.1)

Similarly, if n ≤ t ≤ ∞, we have nx ≤ tx and tx−1 ≤ nx−1 so that

nx

∫ ∞

n

e−ttn−1dt ≤
∫ ∞

n

e−ttn+x−1dt ≤ nx−1

∫ ∞

n

e−ttndt. (2.4.2)

In (2.4.2) integrate the outside integrals by parts to get

−e−nnn+x−1 + nx−1

∫ ∞

n

e−ttndt ≤
∫ ∞

n

e−ttn+x−1dt ≤ e−nnn+x−1 + nx

∫ ∞

n

e−ttn−1dt. (2.4.3)

Add (2.4.1) and (2.4.3) and note the appearance of gamma functions to get

−e−nnn+x−1 + nx−1Γ(n+ 1) ≤ Γ(x+ n) ≤ e−nnn+x−1 + nxΓ(n).

Divide by nxΓ(n) and simplify to get

−e
−nnn

n!
+ 1 ≤ Γ(x+ n)

Γ(n) nx
≤ e−nnn

n!
+ 1.

By Theorem 2.4.1 (Stirling) lim
n→∞

e−nnn

n!
= 0, which completes the proof. ♠

Lemma 2.4.2. For 0 ≤ x <∞, lim
n→∞

Γ(x+ n)

Γ(n) nx
= 1.

Sketch of Proof. Use induction and the fact that
Γ(x+ n)

Γ(n) nx
=
x− 1 + n

n
· Γ(x− 1 + n)

Γ(n) nx−1
. ♠

The following result of Weierstrass can be, and sometimes is, used to define the gamma function instead of
the integral in Definition 2.1.1. See, for example, A Course of Modern Analysis by Whittaker and Watson.

Theorem 2.4.2 (Weierstrass). If x > 0 and γ denotes Euler’s constant, then

1

Γ(x)
= x eγx

∞
∏

k=1

(

1 +
x

k

)

e−x/k.

Proof. Let

Pn = x

n−1
∏

k=1

(

1 +
x

k

)

e−x/k =

(

x

n−1
∏

k=1

(x+ k)

)(

n−1
∏

k=1

1

k

)(

n−1
∏

k=1

e−x/k

)

=

(

n−1
∏

k=0

(x+ k)

)

1

Γ(n)
e−xHn−1 ,

where Hn−1 = 1 + 1
2 + · · ·+ 1

n−1 . By Theorem 2.1.1,

1

Γ(x)
=

∏n−1
k=0 (x+ k)

Γ(x+ n)
=
PnΓ(n)e

xHn−1

Γ(x+ n)
· n

x

nx

=
Γ(n) nx

Γ(x+ n)
Pne

xHn−1e−x logn =
Γ(n) nx

Γ(x+ n)
Pne

(Hn−1−logn)x.

By the definition of γ and Lemmas 2.4.1 and 2.4.2, we get lim
n→∞

Pn =
e−γx

Γ(x)
. ♠

Weierstrass’ theorem connects the gamma function and Euler’s constant. This connection can be further
exploited.
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Theorem 2.4.3. Γ′(1) = −γ.

Proof. The logarithmic derivative of the gamma function, i.e., the derivative of log (Γ(x)), is called the
digamma function and is denoted by ψ(x). Taking logs and differentiating in Theorem 2.4.2 gives

−ψ(x) = γ +
1

x
−

∞
∑

k=1

(

1

k
− 1

k + x

)

,

and, for x = 1,

−ψ(1) = γ + 1−
∞
∑

k=1

(

1

k
− 1

k + 1

)

= γ.

Since ψ(1) = Γ′(1)
Γ(1) and Γ(1) = 1, the proof is complete. ♠

Exercise 2.4.3. Show that ψ(n) = −γ +

n−1
∑

k=1

1

k
for n ≥ 2 and an integer. Find Γ′(2), Γ′(3), and Γ′(17).

Exercise 2.4.4. Show that ψ(12 ) = −γ−2 log 2 and ψ(n+ 1
2 ) = −γ−2 log 2+2

(

1 + 1
3 + 1

5 + · · ·+ 1
2n−1

)

for n ≥ 1 and an integer.

Exercise 2.4.5 (Difference Equation). Show that ψ(x + 1) = ψ(x) + 1
x .

2.5. Evaluation of a Class of Infinite Products

Suppose un is a rational function of n written as

un =
A(n− a1)(n− a2) · · · (n− ak)

(n− b1)(n− b2) · · · (n− bj)
.

In order for the product

∞
∏

n=1

un to converge absolutely, we need A = 1 and j = k, because otherwise un 6→ 1

as n→ ∞. Thus, we are led to the product

P =
∞
∏

n=1

un =
∞
∏

n=1

(n− a1)(n− a2) · · · (n− ak)

(n− b1)(n− b2) · · · (n− bk)

where the general term un can be written as

un =
(

1− a1
n

)

· · ·
(

1− ak
n

)

(

1− b1
n

)−1

· · ·
(

1− bk
n

)−1

= 1− a1 + a2 + · · ·+ ak − b1 − b2 − · · · − bk
n

+O(n−2)

where the Binomial Theorem was used to expand the negative powers. Absolute convergence forces the 1
n

term to be 0, or a1+ · · ·+ak − b1−· · ·− bk = 0. Thus, exp (a1+a2+···+ak−b1−b2−···−bk
n ) = 1, and can multiply

un without changing P .

P =
∞
∏

n=1

(

1− a1

n

)

e
a1
n

(

1− a2

n

)

e
a2
n · · ·

(

1− ak

n

)

e
a
k

n

(

1− b1
n

)

e
b1
n

(

1− b2
n

)

e
b2
n · · ·

(

1− bk
n

)

e
b
k

n
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Now use Theorem 2.4.2 to express P as

P =
∞
∏

n=1

(n− a1)(n− a2) · · · (n− ak)

(n− b1)(n− b2) · · · (n− bk)
=

k
∏

i=1

Γ(1− bi)

Γ(1− ai)
. (2.5.1)

Exercise 2.5.1. Fill in all the details in the derivation of equation (2.5.1).

Exercise 2.5.2. Evaluate, if possible,
∞
∏

n=1

(n+ 2)(n+ 5)(n+ 7)

(n+ 4)2(n+ 6)
.

Example 2.5.1. Evaluate x
(

1− x

1n

)(

1− x

2n

)(

1− x

3n

)

· · ·, where n is a positive integer.

P = x

∞
∏

k=1

(

1− x

kn

)

= x

∞
∏

k=1

(

kn − (x1/n)n

kn

)

.

Let α = e
2π i

n so that αn = e2π i = 1. Note that the n nth roots of 1 are α0, α1, . . . , αn−1. Let z = x1/n. Then
kn − zn = (k−α0z)(k−α1z) · · · (k−αn−1z). (Remember that the “unknown” is k, the product index.) We
can now write

P = zn
∞
∏

k=1

(k − α0z)(k − α1z) · · · (k − αn−1z)

(k − 0)(k − 0) · · · (k − 0)
.

Clearly, b1 + b2 + · · ·+ bn = 0. The sum a1 + a2 + · · ·+ an is the same as z(α0 +α1 + · · ·+αn−1), and since
the αj ’s are the roots of a polynomial of degree n with no degree (n − 1) term, their sum is 0. Hence the
product is absolutely convergent, and equation (2.5.1) may be applied to get

P = zn
n−1
∏

j=0

Γ(1)

Γ(1− αjz)
= zn

1

−α0zΓ(−α0z)(−α1z)Γ(−α1z) · · · (−αn−1z)Γ(−αn−1z)

=
1

(−1)nα1+2+···+(n−1)Γ(−x1/n)Γ(−α1x1/n) · · ·Γ(−αn−1x1/n

Since α1+2+···+(n−1) = (−1)n−1, we get

P =
1

−Γ(−x1/n)Γ(−α1x1/n) · · ·Γ(−αn−1x1/n)
.

Exercise 2.5.3. Evaluate (1− z)
(

1 + z
2

) (

1− z
3

) (

1 + z
4

)

· · ·.

Exercise 2.5.4. Evaluate
∏∞

n=2

(

1− 1
n2

)

,
∏∞

n=k+1

(

1− k2

n2

)

, and
∏∞

n=k+1

(

1− km

nm

)

. In the last product,

m is a positive integer.

Exercise 2.5.5. Define the Cosine Integral Function Ci(x), by

Ci(x) = −
∫ ∞

x

cos t

t
dt.

Show that lim
x→∞

Ci(x) = 0. (See A&S, Chapter 5.)

Exercise 2.5.6. (American Mathematical Monthly, 1998, pp. 278-279) Show that

γ = lim
u→∞

∫ u

1/u

(

1

2
− cosx

)

dx

x
= lim

u→∞

∫ u

1/u

(

1

1 + x
− cosx

x

)

dx.
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