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Chapter 3. Elliptic Integrals and Elliptic Functions

3.1. Motivational Examples

Example 3.1.1 (The Pendulum). A simple, undamped pendulum of length L has motion governed by
the differential equation

u′′ +
g

L
sinu = 0, (3.1.1)

where u is the angle between the pendulum and a vertical line, g is the gravitational constant, and ′ is
differentiation with respect to time. Consider the “energy” function (some of you may recognize this as a
Lyapunov function):

E(u, u′) =
(u′)2

2
+

∫ u

0

g

L
sin z dz =

(u′)2

2
+
g

L
(1− cosu) .

For u(0) and u′(0) sufficiently small (3.1.1) has a periodic solution. Suppose u(0) = A and u′(0) = 0. At
this point the energy is g

L (1− cosA), and by conservation of energy, we have

(u′)2

2
+
g

L
(1− cosu) =

g

L
(1− cosA) .

Simplifying, and noting that at first u is decreasing, we get

du

dt
= −

√

2g

L

√
cosu− cosA.

This DE is separable, and integrating from u = 0 to u = A will give one-fourth of the period. Denoting the
period by T , and realizing that the period depends on A, we get

T (A) = 2

√

2L

g

∫ A

0

du√
cosu− cosA

. (3.1.2)

If A = 0 or A = π there is no motion (do you see why this is so physically?), so assume 0 < A < π. Let
k = sin A

2 , making cosA = 1− 2k2, and also let sin u
2 = k sin θ. Substituting into (3.1.2) gives

T (A) = 4

√

L

g

∫ π

2

0

dθ
√

1− k2 sin2 θ
. (3.1.3)

Since 0 < A < π, we have 0 < k < 1, and the integral in (3.1.3) cannot be evaluated in terms of elementary
functions. This integral is the complete elliptic integral of the first kind and is denoted by K, K(k), or K(m)
(where m = k2).

K = K(k) = K(m) =

∫ π

2

0

dθ
√

1− k2 sin2 θ
. (3.1.4)

A slight generalization, replacing the upper limit by a variable φ, with 0 ≤ φ ≤ π/2, yields the incomplete

elliptic integral of the first kind, denoted K(φ | k) or K(φ |m).

K(φ | k) = K(φ |m) =

∫ φ

0

dθ
√

1−m sin2 θ
. (3.1.5)

Exercise 3.1.1. Fill in all the details in Example 3.1.1.
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Example 3.1.2 (Circumference of an Ellipse). Let an ellipse be given by
x2

a2
+
y2

b2
= 1, where we assume

that a < b. In parametric form, the ellipse is x = a cos θ, y = b sin θ, and the circumference L is given by

L = 4

∫ π

2

0

√

a2 sin2 θ + b2 cos2 θ dθ

= 4b

∫ π

2

0

√

1− (1− a2

b2
) sin2 θ dθ

= 4b

∫ π

2

0

√

1− k2 sin2 θ dθ,

where k2 = 1 − a2

b2 . Again, the integral cannot be evaluated in terms of elementary functions except in
degenerate cases (k = 0 or k = 1). Integrals of the form

E = E(k) = E(m) =

∫ π

2

0

√

1− k2 sin2 θ dθ (3.1.6)

are called complete elliptic integrals of the second kind (as before, m = k2), and integrals of the form

E(φ | k) = E(φ |m) =

∫ φ

0

√

1−m sin2 θ dθ (3.1.7)

are called incomplete elliptic integrals of the second kind.

Exercise 3.1.2. Show that, in the setting of Example 3.1.2, k is the eccentricity of the ellipse.

There are elliptic integrals of the third kind, denoted by Π. As before, if the upper limit in the integral is
π/2, the integral is called complete.

Π(φ | k,N) =

∫ φ

0

dθ

(1 +N sin2 θ)
√

1− k2 sin2 θ
. (3.1.8)

Unfortunately, I don’t know any nice motivating examples for this case. The following is lifted verbatim from
Whittaker and Watson, page 523, and and assumes knowledge of things we have not covered. Understanding
of it is something to which you are encouraged to aspire.

Example 3.1.3 (Rigid Body Motion). It is evident from the expression of Π(u, a) in terms of Theta-
functions that if u, a, k are real, the average rate of increase of Π(u, a) as u increases is Z(a), since Θ(u±a) is
periodic with respect to the real period 2K. This result determines the mean precession about the invariable
line in the motion of a rigid body relative to its centre [Whittaker and Watson were British] of gravity under
forces whose resultant passes through its centre of gravity. It is evident that, for purposes of computation, a
result of this nature is preferable to the corresponding result in terms of Sigma-functions and Weierstrassian
Zeta-Functions, for the reasons that the Theta-functions have a specially simple behaviour with respect to
their real period - the period which is of importance in Applied Mathematics - and that the q-series are much
better adapted for computation than the product by which the Sigma-function is most simply defined.

Before we consider elliptic integrals in general, look back at Example 3.1.1. By either the Binomial Theorem
or Taylor’s Theorem,

(

1− k2 sin2 θ
)−1/2

= 1 +
1

2
k2 sin2 θ +

1

2
· 3
4
k4 sin4 θ +

1

2
· 3
4
· 5
6
k6 sin6 θ + · · · .
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and so

K =

∫ π

2

0

dθ
√

1− k2 sin2 θ
=

∞
∑

n=0

∫ π

2

0

(2n)!

22n(n!)2
k2n sin2n θ dθ.

By Wallis’ formula, we get

K =
π

2

∞
∑

n=0

[

(2n)!

22n(n!)2

]2

k2n =
π

2

[

1 +

(

1

2

)2

k2 +

(

1 · 3
2 · 4

)2

k4 +

(

1 · 3 · 5
2 · 4 · 6

)2

k6 + · · ·
]

.

This series can be used to approximate the value of K. Note that |k| < 1 is necessary for convergence.

Exercise 3.1.3. Express E as a power series in powers of k.

The functions K, E, and Π are tabulated in A&S and are part of Mathematica and Maple.

3.2. General Definition of Elliptic Integrals

If R(x, y) is a rational algebraic function of x and y, the integral
∫

R(x, y) dx can be evaluated in terms of

elementary functions if y =
√
ax+ b or y =

√
ax2 + bx+ c. Things are not so nice if y2 is a cubic or quartic,

however.

Exercise 3.2.1. Evaluate
∫

xy dx and
∫

1
y dx when y =

√
ax+ b and y =

√
ax2 + bx+ c.

Definition 3.2.1. If R(x, y) is a rational function of x and y and y2 is a cubic or quartic polynomial in x
with no repeated factors, then the integral

∫

R(x, y) dx is an elliptic integral.

So, the trigonometry in the above examples notwithstanding, elliptic integrals are concerned with integrating
algebraic functions that you couldn’t handle in second-semester calculus. Given an elliptic integral, the
problem is to reduce it to a recognizable form.

Example 3.2.1. Evaluate I =

∫

∞

1

dx√
x4 − 1

. Here, y2 = x4−1 and R(x, y) = 1
y . A sequence of substitutions

will convert the integral to a form we have seen. First, let x = 1
t to get I =

∫ 1

0

dt√
1− t4

. Next, let t = sinφ,

giving I =

∫ π

2

0

dφ
√

2− cos2 φ
. Finally, let φ = π

2 − θ to get

I =

∫ π

2

0

dθ
√

2− sin2 θ
=

1√
2

∫ π

2

0

dθ
√

1− 1
2 sin

2 θ
=

1√
2
K
(

1
2

)

.

Exercise 3.2.2. Evaluate

∫ π

2

0

dx√
sinx

and

∫ π

2

0

√
cosx dx in terms of complete elliptic integrals, and use the

tables in A&S to get numerical values. [Hint: Although not the only way, the substitution cos (·) = cos2 u
can be used at some stage in both problems.] Express these integrals in terms of the gamma function using
Theorems 2.2.2 and 2.2.4. Also try integrating these directly using Mathematica or Maple.

25



3.3. Evaluation of Elliptic Integrals

A systematic way to evaluate elliptic integrals is desirable. Since R(x, y) is a rational function of x and y,

we can write R(x, y) =
y P (x, y)Q(x,−y)
y Q(x, y)Q(x,−y) , where P and Q are polynomials. Now Q(x, y)Q(x,−y) is an even

function of y, making it a polynomial in x and y2, and thus a polynomial in x. When y P (x, y)Q(x,−y)
is expanded, even powers of y can be written as polynomials in x and odd powers of y can be written as
(polynomials in x) times y, so the numerator of R is linear in y. We then have

R(x, y) =
R1(x) + y R2(x)

y
= R2(x) +

R1(x)

y

where R1 and R2 are rational functions of x. The integration problem has been reduced to
∫

R(x, y) dx =

∫

R2(x) dx +

∫

R1(x)

y
dx.

The first integral can be done by second-semester calculus methods, and the second one will be studied
further. Recall that y2 is a cubic or quartic in x. Think of a cubic as a quartic with the coefficient of x4

equal to 0. Then the following factorization is useful.

Theorem 3.3.1. Any quartic in x with no repeated factors can be written in the form
[

A1(x− α)2 +B1(x − β)2
] [

A2(x− α)2 +B2(x− β)2
]

where, if the coefficients in the quartic are real, then the constants A1, B1, A2, B2, α, and β are real.

Proof. Any quartic Q(x) with real coefficients can be expressed as Q(x) = S1(x)S2(x) where S1 and S2

are quadratics. The complex roots (if any) of the quartic occur in conjugate pairs, so there are three cases.

Case 1. Four real roots. Call the roots {ri}, and assume r1 < r2 < r3 < r4. Let
S1(x) = (x − r1)(x − r2) and S2(x) = (x − r3)(x − r4), with an appropriate constant
multiplier in case the coefficient of x4 is not 1. Note that the roots of S1 and S2 do not
interlace.

Case 2. Two real roots and two complex roots. Denote the real roots by r1 and r2, and
the complex roots by ρ1±ρ2i. Let S1(x) = (x−r1)(x−r2) and S2(x) = x2−2ρ1 x+(ρ21+ρ

2
2).

Case 3. Four complex roots. Call the roots ρ1 ± ρ2i and ρ3 ± ρ4i. Let S1(x) =
x2 − 2ρ1 x+ (ρ21 + ρ22) and S2(x) = x2 − 2ρ3 x+ (ρ23 + ρ24).

In case y2 is a cubic, we simply eliminate one real factor in Case 1 or Case 2. Case 3 will not apply if y2 is
a cubic. So, in general, we have

S1(x) = a1x
2 + 2b1x+ c1 and S2(x) = a2x

2 + 2b2x+ c2.

Now we look for constants λ such that S1(x)− λS2(x) is a perfect square. Since S1(x)− λS2(x) is simply a
quadratic in x, it is a perfect square if and only if the discriminant is zero, or (a1−λa2)(c1−λc2)−(b1−λb2)2 =
0. This discriminant is a quadratic in λ, and has two roots, λ1 and λ2. We get

S1(x)− λ1S2(x) = (a1 − λ1a2)

[

x+
b1 − λ1b2
a1 − λ1b2

]2

= (a1 − λ1a2)(x− α)2, (3.3.1)

S1(x)− λ2S2(x) = (a1 − λ2a2)

[

x+
b1 − λ2b2
a1 − λ2b2

]2

= (a1 − λ2a2)(x− β)2, (3.3.2)

Now solve equations (3.3.1) and (3.3.2) for S1(x) and S2(x) to get the required forms. ♠
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Example 3.3.1. Consider Q(x) = 3x4− 16x3+24x2− 16x+4 = (3x2 − 4x+2)(x2− 4x+2). Mathematica
or Maple is handy for the factorization. For S1(x) − λS2(x) to be a perfect square, we need (3 − λ)(2 −
2λ)− (−2 + 2λ)2 = 0, which has solutions λ1 = −1 and λ2 = 1. So we get S1(x) = 2(x− 1)2 + (x− 0)2 and
S2(x) = 2(x− 1)2 − (x− 0)2.

Exercise 3.3.1. Fill in all the details in the proof of Theorem 3.3.1 and in Example 3.3.1.

If b1 = b2 = 0, there appears to be a breakdown in the form specified in Theorem 3.3.1. In this case you
can set up S1 and S2 with complex coefficients to get the form in the theorem. In practice, this will not be
necessary, however, because the form of the integral will already be one toward which you are working.

In the integral
∫ R1(x)

y dx, with the denominator written as in Theorem 3.3.1, make the substitution

t =
x− α

x− β
, dx = (x− β)2(α − β)−1 dt.

This gives

y2 =
[

A1(x− α)2 +B1(x − β)2
] [

A2(x− α)2 +B2(x− β)2
]

= (x− β)4
(

A1t
2 +B1

) (

A2t
2 +B2

)

and the integrand becomes

R1(x)

[

(α− β)−1dt
√

(A1t2 +B1) (A2t2 +B2)

]

.

Finally, R1(x) can be written as ±(α− β)R3(t) where R3 is a rational function of t.

Lemma 3.3.1. There exist rational functions R4 and R5 such that R3(t) +R3(−t) = 2R4(t
2) and R3(t)−

R3(−t) = 2t R5(t
2). Therefore, R3(t) = R4(t

2) + t R5(t
2).

Exercise 3.3.2. Use Mathematica or Maple to verify Lemma 3.3.1 for several rational functions of your
choice, including at least one with arbitrary coefficients. Mathematica commands which might be useful are
Denominator, Expand, Numerator, and Together. Then prove the lemma. [Hint: Check for even and odd
functions.]

The integral
∫ R1(x)

y dx is now reduced to

∫

R4(t
2) dt

√

(A1t2 +B1) (A2t2 +B2)
+

∫

t R5(t
2) dt

√

(A1t2 +B1) (A2t2 +B2)
.

The substitution u = t2 allows the second integral to be evaluated in terms of elementary functions. If R4(t
2)

is expanded in partial fractions1 the first integral is reduced to sums of integrals of the following type:

∫

t2m
[(

A1t
2 +B1

) (

A2t
2 +B2

)]−1/2
dt (3.3.3)

∫

(1 +Nt2)−m
[(

A1t
2 +B1

) (

A2t
2 +B2

)]−1/2
dt (3.3.4)

1 The Apart command in Mathematica does this.
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where in (3.3.3) m is an integer, and in (3.3.4) m is a positive integer and N 6= 0. Reduction formulas can
be derived to reduce (3.3.3) or (3.3.4) to a combination of known functions and integrals in the following
canonical forms:

∫

[(

A1t
2 +B1

) (

A2t
2 +B2

)]−1/2
dt, (3.3.5)

∫

t2
[(

A1t
2 +B1

) (

A2t
2 +B2

)]−1/2
dt, (3.3.6)

∫

(1 +Nt2)−1
[(

A1t
2 +B1

) (

A2t
2 +B2

)]

−1/2
dt. (3.3.7)

Equations (3.3.5), (3.3.6), and (3.3.7) are the elliptic integrals of the first, second, and third kinds, so named
by Legendre.

Exercise 3.3.3. By differentiating t
√

(A1t2 +B1) (A2t2 +B2), obtain a reduction formula for (3.3.3) when
m = 2. Do you see how this process can be extended to all positive m?

Exercise 3.3.4. Find a reduction formula for (3.3.3) when m = −1.

Exercise 3.3.5. Show that the transformation t = sin θ applied to (3.1.4), (3.1.7), or (3.1.8) yields integrals
of the form (3.3.5), (3.3.6), and (3.3.7).

For real elliptic integrals, all the essentially different combinations of signs in the radical are given in the
following table.

A1 + + − + + −

B1 + − + − − +

A2 + + + + − −

B2 + + + − + +

Table 3.3.1.

Example 3.3.2. Find the appropriate substitution for the second column of Table 3.3.1. Assume that A1,

B1, A2, and B2 are all positive, so the radical is
√

(A1t2 −B1) (A2t2 +B2). Substitute t =
√

B1

A1

sec θ,

dt =
√

B1

A1

sec θ tan θ dθ so that

dt
√

(A1t2 −B1) (A2t2 +B2)
=

dθ√
A2B1 +A1B2 cos2 θ

=
1√

A2B1 +A1B2

dθ
√

1− B2A1

B2A1+B1A2

sin2 θ
.

Here, m = k2 = B2A1

B2A1+B1A2

< 1, and we have the form of (3.1.4) or (3.1.5).

Exercise 3.3.6. Fill in the details of Example 3.3.2, and find the value of

∫

∞

1
√

2

dt
√

(2t2 − 1) (t2 + 2)
.
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Exercise 3.3.7. Pick another column of Table 3.3.1 and find the appropriate substitution. Consult with
your classmates so that every column is considered by someone.

3.4. The Jacobian Elliptic Functions

Trigonometric functions, even though they can do the job, are not the best things to use when reducing
elliptic integrals. The ideal substitution in, say, (3.3.5), would be one where we have functions f , g, and h
such that

t = f(v), dt = g(v)h(v) dv, A1t
2 +B1 = g2(v), and A2t

2 +B2 = h2(v).

Adjustments for the constants would have to be made, of course, but such a substitution would reduce
(3.3.5) to

∫

dv. Fortunately, such functions exist! They are called the Jacobian elliptic functions and can be
thought of as extensions of the trigonometric functions.

Consider the function defined by an integral as follows:

u = g(x) =

∫ x

0

1√
1− t2

dt =

∫ φ

0

dθ = φ = sin−1 x.

(Here we used the substitution t = sin θ, x = sinφ, but we really don’t want to focus on this part.)
Assume that “sin” and “sin−1” are simply names we came up with for the functions involved here, making
“sin−1” nothing more than another name for “g”, which is defined by the integral. Thinking similarly, we
can say that g−1(u) = sinu. Thus, we have defined the function “sin” as the inverse of the function g
which is given in terms of the integral. A table of values for g can be calculated by numerical integration
and this table with the entries reversed produces a table for g−1. Now a new function can be defined by

h−1(u) =

√

1− [g−1(u)]2. Clearly,
[

g−1(u)
]2

+
[

h−1(u)
]2

= 1, and we might want to give “h−1” a new
name, such as “cos”, for instance. All of trigonometry can be developed in this way, without reference to
angles, circles, or any of the usual stuff associated with trigonometry. We won’t do trigonometry this way,
because you already know that subject, but we will use this method to study the Jacobian elliptic functions.

In the spirit of the last paragraph, but assuming you know all about trigonometry, consider, for 0 ≤ m ≤ 1,

u =

∫ x

0

1
√

(1− t2) (1−mt2)
dt =

∫ φ

0

dθ
√

1−m sin2 θ
(3.4.1)

where the integrals are related by the substitution t = sin θ, x = sinφ. Note that, for fixed m, the integrals
define u as a function of x or φ, and so a table of values for this function and its inverse can be constructed
by numerical integration as discussed above.

Definition 3.4.1. The Jacobian elliptic functions sn, cn, and dn are

sn u = sinφ = x, cn u = cosφ =
√

1− x2, dn u =

√

1−m sin2 φ =
√

1−mx2

where u and φ or x are related by (3.4.1). In particular, sn is the inverse of the function of x defined by
the first integral in (3.4.1). Sometimes specific dependence on the parameter m is denoted by sn(u |m),
cn(u |m), and dn(u |m).

Some immediate consequences of Definition 3.4.1 are, for any m,

sn2u+ cn2u = 1, m sn2u+ dn2u = 1, sn(0) = 0, cn(0) = dn(0) = 1
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Exercise 3.4.1. Show that sn is an odd function and cn is an even function.

The following notation and terminology applies to all Jacobian elliptic functions:

u : argument

m : parameter

m1 = 1−m : complementary parameter

φ : amplitude, denoted φ = amu

k =
√
m : modulus

k′ =
√

1− k2 : complementary modulus

Exercise 3.4.2. Show that
dφ

du
= dn u, and that

d

du
sn u = cn u dn u. Also find

d

du
cn u and

d

du
dn u.

Exercise 3.4.3. Derive Formulas 17.4.44, 17.4.45, and 17.4.52 on page 596 of A&S. This verifies that
sn, cn, and dn are among the kinds of functions we wanted at the beginning of this section.

Exercise 3.4.4. Show that sn(u | 0) = sinu, cn(u | 0) = cosu, and dn(u | 0) = 1. Also show that sn(u | 1) =
tanhu and cn(u | 1) = dn(u | 1) = sech u.

There are nine other Jacobian elliptic functions, all of which can be expressed in terms of sn, cn, and dn
in much the same way all other trig functions can be expressed in terms of sin and cos. The notation uses
only the letters s, c, d, and n according to the following rules. First, quotients of two of sn, cn, and dn are
denoted by the first letter of the numerator function followed by the first letter of the denominator function.
Second, reciprocals are denoted by writing the letters of the function whose reciprocal is taken in reverse
order. Thus

ns(u) =
1

sn(u)
, nc(u) =

1

cn(u)
, nd(u) =

1

dn(u)

sc(u) =
sn(u)

cn(u)
, sd(u) =

sn(u)

dn(u)
, cd(u) =

cn(u)

dn(u)
(3.4.2)

cs(u) =
cn(u)

sn(u)
, ds(u) =

dn(u)

sn(u)
, dc(u) =

dn(u)

cn(u)

Quotients of any two Jacobian elliptic functions can be reduced to a quotient involving sn, cn, and/or dn.
For example

sc(u)

sd(u)
= sc(u) · ds(u) = sn(u)

cn(u)
· dn(u)
sn(u)

=
dn(u)

cn(u)
= dc(u).

3.5. Addition Theorems

The Jacobian elliptic functions turn out to be not only periodic, but doubly periodic. Viewed as functions
of a complex variable, they exhibit periodicity in both the real and imaginary directions. The following
theorem will be quite useful in the next section for studying periodicity. Think about this theorem in the
light of Exercise 3.4.4.

Theorem 3.5.1 (Addition Theorem). For a fixed m,

sn(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
. (3.5.1)
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Proof. Let α be a constant, and suppose u and v are related by u + v = α, so that
dv

du
= −1. Denote

differentiation with respect to u by ,̇ and let s1 = sn(u), s2 = sn(v). Then, keeping in mind that derivatives
of s2 require the chain rule,

ṡ21 = (1 − s21)(1−ms21) and ṡ22 = (1− s22)(1−ms22).

If we differentiate again and divide by 2ṡ1 and 2ṡ2, we get

s̈1 = −(1 +m)s1 + 2ms31 and s̈2 = −(1 +m)s2 + 2ms32.

Thus
s̈1s2 − s̈2s1
ṡ21s

2
2 − ṡ22s

2
1

=
−2ms1s2
1−ms21s

2
2

and multiplying both sides by ṡ1s2 + ṡ2s1 gives
d
du (ṡ1s2 − ṡ2s1)

ṡ1s2 − ṡ2s1
=

d
du (1−ms21s

2
2)

1−ms21s
2
2

.

Integration and clearing of logarithms gives

ṡ1s2 − ṡ2s1
1−ms21s

2
2

=
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
= C. (3.5.2)

Equation (3.5.2) may be thought of as a solution of the differential equation du + dv = 0. But u + v = α
is also a solution of this differential equation, so the two solutions must be dependent, i.e., there exists a
function f such that

f(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
.

If v = 0 we see from Exercise 3.4.4 that f(u) = sn(u), so f = sn and the theorem is proved. ♠

Exercise 3.5.1. Derive the following addition theorems for cn and dn.

cn(u+ v) =
cn(u) cn(v)− sn(u) sn(v) dn(u) dn(v)

1−msn2(u) sn2(v)
(3.5.3)

dn(u+ v) =
dn(u) dn(v)−msn(u) sn(v) cn(u) cn(v)

1−msn2(u) sn2(v)
. (3.5.4)

3.6. Periodicity

Since u =

∫ x

0

1
√

(1− t2) (1−mt2)
dt, means that sn(u |m) = x, if we let K =

∫ 1

0

1
√

(1− t2) (1−mt2)
dt,

then sn(K |m) = 1, cn(K |m) = 0, and dn(K |m) =
√
1−m = k′. By the addition theorem for sn, we get

sn(u+K) =
sn(u) cn(K) dn(K) + sn(K) cn(u) dn(u)

1−msn2(u) sn2(K)
=
cn(u)

dn(u)
= cd(u).

Similarly, the addition theorems for cn and dn give

cn(u+K) =
cn(u) cn(K)− sn(u) sn(K) dn(u) dn(K)

1−msn2(u) sn2(K)
= −

√
1−msd(u)

dn(u +K) =
dn(u) dn(K)−msn(u) sn(K) cn(u) cn(K)

1−msn2(u) sn2(K)
=

√
1−mnd(u).

These results can be used to get

sn(u+ 2K) = −sn(u) cn(u+ 2K) = −cn(u) dn(u + 2K) = dn(u)

and
sn(u+ 4K) = sn(u) cn(u+ 4K) = cn(u).

Thus, sn and cn have period 4K, and dn has period 2K, where K = K(m) is the elliptic integral of the first
kind. Note that we say “a period” instead of “the period” in the following theorem.

31



Theorem 3.6.1 (First Period Theorem). If K =

∫ 1

0

1
√

(1− t2) (1−mt2)
dt =

∫ π

2

0

dθ
√

1−m sin2 θ
, then

4K is a period of sn and cn, and 2K is a period of dn.

Exercise 3.6.1. Fill in the details of the proof of Theorem 3.6.1.

To study other possible periods, let K ′ =

∫ 1

0

1
√

(1− t2) (1−m1t2)
dt. K ′ is the same function of m1 as K

is of m. Suppose 0 < m < 1 so that both k and k′ are also strictly between 0 and 1.

Exercise 3.6.2. In the integral for K ′, substitute s2 = 1
1−m1t2

to get K ′ =

∫ 1

k

1

1
√

(s2 − 1) (1− k2t2)
ds.

Now consider the integral

∫ 1

k

0

1
√

(1− t2) (1− k2t2)
dt. Since 1

k > 1, the integrand has a singularity at t = 1,

and the integral has complex values for 1 < t < 1
k . To deal with these problems, we consider t a complex

variable and look at the following path from the origin to ( 1k , 0) in the complex plane:

0 1−δ 1 1+δ 1
k

Figure 3.6.1

When t is on the semicircle near 1 + δ, t = 1 + δeiǫ for some ǫ > 0. This makes 1− t2 = δ(2 + δeiǫ)ei(π+ǫ).
In order to get the principal value of the square root, we must replace ei(π+ǫ) by e−i(π−ǫ). Then, as ǫ→ 0+,
so that t→ 1 + δ clockwise on the semicircle, we get

√

1− t2 = lim
ǫ→0+

√

δ(2 + δeiǫ)ei(π+ǫ)/2

=
√

δ(2 + δ)e−iπ/2

= −i
√

t2 − 1.

We now can see that

∫ 1

k

0

1
√

(1− t2) (1− k2t2)
dt =

∫ 1

0

1
√

(1− t2) (1− k2t2)
dt+

∫ 1

k

1

1
√

(1− t2) (1− k2t2)
dt

= K(m)− 1

i

∫ 1

k

1

1
√

(t2 − 1) (1− k2t2)
dt

= K(m) + iK ′(m).

Therefore,
sn(K + iK ′) = 1/k, from which we get dn(K + iK ′) = 0

and

cn(K + iK ′) = lim
x→1/k

√

1− x2 = lim
x→1/k

[

−i
√

x2 − 1
]

= −i k
′

k
,

where the limits are taken along the path shown in Figure 3.6.1.
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Exercise 3.6.3. Show that

sn(u+K + iK ′) =
1

k
dc(u), cn(u+K + iK ′) = − i k

′

k
nc(u), dn(u +K + iK ′) = i k′ sc(u).

Exercise 3.6.4. Show that

sn(u+ 2K + 2iK ′) = −sn(u), cn(u+ 2K + 2iK ′) = cn(u), dn(u+ 2K + 2iK ′) = −dn(u).

Exercise 3.6.5. Show that

sn(u+ 4K + 4iK ′) = sn(u), dn(u+ 4K + 4iK ′) = dn(u).

So, the Jacobian elliptic functions also have a complex period.

Theorem 3.6.2 (Second Period Theorem). If K =

∫ 1

0

dt
√

(1− t2) (1−mt2)
, and

K ′ =

∫ 1

0

dt
√

(1− t2) (1−m1t2)
, then 4K + 4iK ′ is a period of sn and dn, and 2K + 2iK ′ is a period of cn.

Theorem 3.6.3 (Third Period Theorem). If K ′ =

∫ 1

0

dt
√

(1− t2) (1−m1t2)
, then 4iK ′ is a period of

cn and dn, and 2iK ′ is a period of sn.

Exercise 3.6.6. Prove Theorem 3.6.3. [Hint: iK ′ = −K +K + iK ′.]

The numbers K and iK ′ are called the real and imaginary quarter periods of the Jacobian elliptic functions.

3.7. Zeros, Poles, and Period Parallelograms

Series expansions of sn, cn, and dn around u = 0 are

sn(u |m) = u− 1 +m

6
u3 +

1 + 14m+m2

120
u5 +O(u7)

cn(u |m) = 1− 1

2
u2 +

1 + 4m

24
u4 +O(u6)

dn(u |m) = 1− m

2
u2 +

4m+m2

24
u4 +O(u6)

Series expansions of sn, cn, and dn around u = iK ′ are

sn(u+ iK ′ |m) =
1

k sn(u |m)
=

1

k

[

1

u
+

1 +m

6
u+

7− 22m+ 7m2

360
u3 +O(u4)

]

cn(u+ iK ′ |m) =
−i
k
ds(u |m) =

−i
k

[

1

u
+

1− 2m

6
u+

7 + 8m− 8m2

360
u3 +O(u4)

]

dn(u+ iK ′ |m) = −i cs(u |m) = −i
[

1

u
+

−2 +m

6
u+

−8 + 8m+ 7m2

360
u3 +O(u4)

]

From these expansions we can identify the poles and residues of the Jacobian elliptic functions.
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Theorem 3.7.1 (First Pole Theorem). At the point u = iK ′ the functions sn, cn, and dn have simple
poles with residues 1/k, −i/k, and −i respectively.

Theorem 3.7.2 (Second Pole Theorem). At the point u = 2K + iK ′ the functions sn and cn have
simple poles with residues −1/k and i/k. At the point u = 3iK ′ the function dn has a simple pole with
residue i.

Exercise 3.7.1. Prove both Pole Theorems. If you want to verify the series expansions, use Mathematica
or Maple.

From the period theorems we see that each Jacobian elliptic function has a smallest period parallelogram

in the complex plane. It is customary to translate period parallelograms so that no zeros or poles are on
the boundary. When this is done, we see that the period parallelogram for each Jacobian elliptic function
contains exactly two zeros and two poles in its interior. Unless stated otherwise, we shall assume that any
period parallelogram has been translated in this manner. See Figure 3.7.1, in which zeros are indicated by
a o and poles by a ∗.

K 3 K 5 K
-iK’

iK’

3 iK’

* *

*

*

*

*

*

*

*

*

*

*

o o o o

o o o o

K 3 K 5 K-iK’

iK’

3 iK’

* *

*

*

*

*

*

*

*

*

*

*

o o o

o o o

Figure 3.7.1. Period parallelograms for sn and cn.

Exercise 3.7.2. Sketch period parallelograms for dn, sc, and cd with no zeros or poles on the boundaries.

If C denotes the counterclockwise boundary of a period parallelogram for some Jacobian elliptic function,
the Residue Theorem from complex analysis says that the the integral around C of the Jacobian elliptic
function is 1/2πi times the sum of the residues at the two poles inside C. In the next section we will see
that for elliptic functions in general this integral is zero.

Exercise 3.7.3. If C denotes the boundary of a period parallelogram, oriented counterclockwise, compute
∫

C
sn(u) du,

∫

C
cn(u) du, and

∫

C
dn(u) du.

A useful device for dealing with the Jacobian elliptic functions is the doubly infinite array, or lattice, consisting
of the letters s, c, d, and n shown in Figure 3.7.2. Think of this lattice in the complex plane and denote one
of the points labelled s by Ks. Then denote the point to the east labelled c by Kc, the point to the north
labelled n by Kn, and the point to the southwest labelled d by Kd. If we put the origin at Ks, then the sum
(of complex numbers, or of vectors) Ks +Kc +Kd +Kn = 0. Assume the scale on the lattice is such that
Kc = K, Kn = iK ′, and Kd = −K − iK ′, where K and iK ′ are the real and imaginary quarter periods.
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n d n d n d n

s c s c s c s

n d n d n d n

s c s c s c s

Figure 3.7.2. This pattern is repeated indefinitely on all sides.

If the letters p, q, r, and t are any permutation of s, c, d, and n, then the Jacobian elliptic function pq has
the following properties. See also A&S, p.569.

(1) pq is doubly periodic with a simple zero at Kp and a simple pole at Kq.

(2) The step Kq −Kp from the zero to the pole is a half-period; the numbers Kc, Kn, and Kd not equal
to Kq −Kp are quarter-periods.

(3) In the series expansion of pq around u = 0 the coefficient of the leading term is 1.

Here are plots of the modular surfaces over one period parallelogram of the functions w = sn(u | 12 ) and
w = dn(u | 12 ), where u = x + i y. Complex functions of a complex variable require four dimensions for a
complete graph, but a useful compromise is to plot the modulus, or absolute value of a complex function,
which is essentially a real function of the real and imaginary parts of the complex variable. The surfaces in
Figure 3.7.3 are plots of w = | sn(x+ i y | 12 ) | and w = | dn(x+ i y | 12 ) |. The depressions correspond to zeros
and the towers correspond to poles.
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Figure 3.7.3. Modular surfaces of sn and dn.

Exercise 3.7.4. Use the lattice in Figure 3.7.2 to determine the periods, zeros, and poles of cd and ds. Use
Mathematica or Maple to plot the modular surfaces over one period parallelogram.

Exercise 3.7.5. Why are the functions sn, cn, and dn called “the Copolar Trio” in A&S, 16.3?
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3.8. General Elliptic Functions

Definition 3.8.1. An elliptic function of a complex variable is a doubly periodic function which is mero-
morphic, i.e., analytic except for poles, in the finite complex plane.

If the smallest periods of an elliptic function are 2ω1 and 2ω2, then the parallelogram with vertices 0, 2ω1,
2ω1 + 2ω2, and 2ω2 is the fundamental period parallelogram. A period parallelogram is any translation of a
fundamental period parallelogram by integer multiples of 2ω1 and/or 2ω2. A cell is a translation of a period
parallelogram so that no poles are on the boundary. Parts of the proofs of the next few theorems depend on
the theory of functions of a complex variable. If you have not studied that subject (or if you have forgotten
it), learn what the theorems say, and come back to the proofs after you have studied the theory of functions
of a complex variable. In fact, this material should be an incentive to take a complex variables course!

Theorem 3.8.1. An elliptic function has a finite number of poles in any cell.

Outline of Proof. A cell is a bounded set in the complex plane. If the number of poles in a cell is infinite,
then by the two-dimensional Bolzano-Weierstrass Theorem, the poles would have a limit point in the cell.
This limit point would be an essential singularity of the elliptic function. It could not be a pole, because a
pole is an isolated singularity. This is a contradiction of the definition of an elliptic function. ♠

Theorem 3.8.2. An elliptic function has a finite number of zeros in any cell.

Proof. If not, then the reciprocal function would have an infinite number of poles in a cell, and as in the
proof of Theorem 3.8.1, would have an essential singularity in the cell. This point would also be an essential
singularity of the original function, contradicting the definition of an elliptic function. ♠

Theorem 3.8.3. In a cell, the sum of the residues at the poles of an elliptic function is zero.

Proof. Let C be the boundary of the cell, oriented counterclockwise, and let the vertices be given by t,
t + 2ω1, t + 2ω1 + 2ω2, and t + 2ω2, where 2ω1 and 2ω2 are the periods. Call the elliptic function f . The
sum of the residues is

1

2π i

∫

C

f(z) dz =
1

2π i

[
∫ t+2ω1

t

f(z) dz +

∫ t+2ω1+2ω2

t+2ω1

f(z) dz +

∫ t+2ω2

t+2ω1+2ω2

f(z) dz +

∫ t

t+2ω2

f(z) dz

]

.

In the second integral, replace z by z + 2ω1, and in the third integral, replace z by z + 2ω2. We then get

1

2π i

∫

C

f(z) dz =
1

2π i

∫ t+2ω1

t

(f(z)− f(z + 2ω2)) dz −
1

2π i

∫ t+2ω2

t

(f(z)− f(z + 2ω1)) dz

By the periodicity of f , each of these integrals is zero. ♠

Theorem 3.8.4 (Liouville’s Theorem for Elliptic Functions). An elliptic function having no poles in
a cell is a constant.

Proof. If f is elliptic having no poles in a cell, then f is analytic both in the cell and on the boundary of the
cell. Thus, f is bounded on the closed cell, and so there is anM such that for z in the closed cell, |f(z)| < M .
By periodicity, we then have that |f(z)| < M for all z in the complex plane, and so by Liouville’s (other,
more famous) Theorem, f is constant. ♠
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Definition 3.8.2. The order of an elliptic function f is equal to the number of poles, counted according to
multiplicity, in a cell.

The following lemma is useful in determining the order of elliptic functions.

Lemma 3.8.1. If f is an elliptic function and z0 is any complex number, the number of roots of the equation
f(z) = z0 in any cell depends only on f and not on z0.

Proof. Let C be the boundary, oriented counterlockwise, of a cell, and let Z and P be the respective numbers
of zeros and poles, counted according to multiplicity, of f(z)−z0 in the cell. Then by the Argument Principle,

Z − P =
1

2π i

∫

C

f ′(z)

f(z)− z0
dz.

Breaking the integral into four parts and substituting as in the proof of Theorem 3.8.3, we get Z − P = 0.
Thus, f(z)− z0 has the same number of zeros as poles; but the number of poles is the same as the number
of poles of f , which is independent of z0. ♠

Definition 3.8.3. The order of an elliptic function f is equal to the number of zeros, counted according to
multiplicity, of f in any cell.

Exercise 3.8.1. Prove that if f is a nonconstant elliptic function, then the order of f is at least two.

Thus, in terms of the number of poles, the simplest elliptic functions are those of order two, of which there
are two kinds: (1) those having a single pole of order two whose residue is zero, and (2) those having two
simple poles whose residues are negatives of one another. The Jacobian elliptic functions are of the second
kind. An example of an elliptic function of the first kind will be given in the next section.

3.9. Weierstrass’ P-function

Let ω1 and ω2 be two complex numbers such that the quotient ω1/ω2 is not a real number, and for integers
m and n let Ωm,n = 2mω1 + 2nω2. Then Weierstrass’ P-function is defined by

P (z) =
1

z2
+

′
∑

m,n

[

1

(z − Ωm,n)2
− 1

Ω2
m,n

]

, (3.9.1)

where the sum is over all integer values of m and n, and the prime notation indicates that m and n
simultaneously zero is not included. The series for P (z) can be shown to converge absolutely and uniformly
except at the points Ωm,n, which are poles.

Exercise 3.9.1. Show that P ′(z) = −2
∑

m,n

1

(z − Ωm,n)3
. Note the absence of the prime on the sum.

Exercise 3.9.2. Show that P is an even function and that P ′ is an odd function.

Theorem 3.9.1. P ′(z) is doubly periodic with periods 2ω1 and 2ω2, and therefore P ′ is an elliptic function.

Proof. The sets {Ωm,n}, {Ωm,n − 2ω1}, and {Ωm,n − 2ω2} are all the same. ♠
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Theorem 3.9.2. P is an elliptic function with periods 2ω1 and 2ω2.

Proof. Since P ′(z + 2ω1) = P ′(z), we have P (z + 2ω1) = P (z) +A, where A is a constant. If z = −ω1, we
have P (ω1) = P (−ω1) +A, and since P is an even function, A = 0. Similarly, P (z + 2ω2) = P (z). ♠

P̃ (z) = P (z) − z−2 is analytic in a neighborhood of the origin and is an even function, so P̃ has a series
expansion around z = 0:

P̃ (z) = a2z
2 + a4z

4 +O(z6)

a2 =
6

2!

′
∑

m,n

1

Ω4
m,n

=
1

20
g2

g2 = 60

′
∑

m,n

1

Ω4
m,n

a4 =
120

4!

′
∑

m,n

1

Ω6
m,n

=
1

28
g3

g3 = 140

′
∑

m,n

1

Ω6
m,n

Thus we get the following series representations.

P (z) = z−2 +
1

20
g2z

2 +
1

28
g3z

4 +O(z6)

P ′(z) = −2z−3 +
1

10
g2z +

1

7
g3z

3 +O(z5)

P (z)3 = z−6 +
3

20
g2z

−2 +
3

28
g3 +O(z2)

(P ′(z))2 = 4z−6 − 2

5
g2z

−2 − 4

7
g3 +O(z2)

Combining these leads to
(P ′(z))2 − 4P 3(z) + g2P (z) + g3 = O(z2). (3.9.1)

Exercise 3.9.3. Verify the details in the derivation of equation (3.9.1).

The left side of (3.9.1) is an elliptic function with periods the same as P and is analytic at z = 0. By
periodicity, then, it is analytic at each of the points Ωm,n. But the points Ωm,n are the only points where
the left side of (3.9.1) can have poles, so it is an elliptic function with no poles, and hence a constant. Let
z → 0 to see that the constant is 0.

Exercise 3.9.4. Verify the statements in the last paragraph.

The numbers g2 and g3 are called the invariants of P . P satisfies the differential equation

(P ′(z))2 = 4P 3(z)− g2P (z)− g3. (3.9.2)

3.10. Elliptic Functions in Terms of P and P ′

Suppose f is an elliptic function and let P be the Weierstrass elliptic function (WEF) with the same periods
as f . Then

f(z) =
1

2
[f(z) + f(−z)] + 1

2

[

(f(z)− f(−z)) (P ′(z))
−1

]

P ′(z)

= (even elliptic function) + (even elliptic function)P ′(z)
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So, if we can express any even elliptic function in terms of P and P ′, then we can so express any elliptic
function.

Suppose φ is an even elliptic function. The zeros and poles of φ in a cell can each be arranged in two sets:

zeros: {a1, a2, . . . , an} and additional points in the cell congruent to {−a1,−a2, . . . ,−an}.

poles: {b1, b2, . . . , bn} and additional points in the cell congruent to {−b1,−b2, . . . ,−bn}.

Consider the function

G(z) =
1

φ(z)

n
∏

j=1

(P (z)− P (aj))
?

(P (z)− P (bj))?
.

Exercise 3.10.1. Prove that G is a constant function when the question marks are suitably replaced. (For
a specific case, see Example 3.10.1 below.)

Thus, φ(z) = A
n
∏

j=1

(P (z)− P (aj))
?

(P (z)− P (bj))?
, and we have the following theorem.

Theorem 3.10.1. Any elliptic function can be expressed in terms of the WEFs P and P ′ with the same
periods. The expression will be rational in P and linear in P ′.

A related theorem is the following.

Theorem 3.10.2. An algebraic (polynomial, I believe - LMH) relation exists between any two elliptic
functions with the same periods.

Outline of proof: Let f and φ be elliptic with the same periods. By Theorem 3.10.1, each can be
expressed as a rational function of the WEFs P and P ′ having the same periods, say f(z) = R1(P (z), P

′(z)),
φ(z) = R2(P (z), P

′(z)). We can get an algebraic relation between f and φ by eliminating P and P ′ from
these equations plus (3.9.2). ♠

Corollary 3.10.1. Every elliptic function is related to its derivative by an algebraic relation.

Proof: Clear, and left to the reader.

Example 3.10.1. Express cn z in terms of P and P ′. Since cn is even, has periods 4K and 2K+2iK ′, has
zeros at K and 3K, and has poles at iK ′ and 2K + iK ′, we can let a1 = K and b1 = iK ′. Thus,

A =
1

cn z

P (z)− P (K)

P (z)− P (iK ′)
.

As z → 0 we see that A = 1, so

cn z =
P (z)− P (K)

P (z)− P (iK ′)
.

Exercise 3.10.2. Let m = .5 and verify all statements in Example 3.10.1. Compare modular surface plots
of cn and its representation in terms of P .
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The algebraic relation between two equiperiodic elliptic functions depends on the orders of the elliptic
functions. Recalling Lemma 3.8.1, if f has order m and φ has order n, then corresponding to any value of
f(z), there are m values of z. Corresponding to each of these m values of z there are m values of φ(z).
Similarly, to each value of φ(z) there correspond n values of f(z). Thus, the algebraic relation between f
and φ will be of degree m or lower in φ and degree n or lower in f .

Example 3.10.2. The functions f(z) = P (z) and φ(z) = P 2(z) have orders 2 and 4, so their relation will
be of degree at most 2 in φ and at most 4 in f . The relation between them is obviously φ = f2, of less than
maximum degrees.

Example 3.10.3. Let f(z) = P (z) (order 2) and φ(z) = P ′(z) (order 3). Their relation is given by equation
(3.9.2), and is of degree 2 in φ and degree 3 in f .

3.11. Elliptic Wheels - An Application

The material in this section is taken from: Leon Hall and Stan Wagon, Roads and wheels, Mathematics

Magazine 65, (1992), 283-301. See this article for more details.

Suppose we are given a wheel in the form of a function defined by r = g(θ) in polar coordinates with the axle
of the wheel at the origin, or pole. The problem is, what road is required for this wheel to roll on so that
the axle remains level? The axle may or may not coincide with the wheel’s geometric center, and the road
is assumed to provide enough friction so the wheel never slips. Assume the road (to be found) has equation
y = f(x).

A

B

C

D

y=f(x)

O

r=g(0(x))

Figure 3.11.1. Wheel - road relationships

Three conditions will guarantee that the axle of the wheel moves horizontally on the x-axis as the wheel rolls
on the road. These conditions are illustrated in Figure 3.11.1. First, the initial point of contact must be
directly below the origin, which means that when x = 0, θ = −π/2. Second, corresponding arc lengths along
the road and on the wheel must be equal. In Figure 3.11.1, this means that the road length from A to B
must equal the wheel length from A to C. Third, the radius of the wheel must match the depth of the road
at the corresponding point, which means that OC = DB, or g(θ(x)) = −f(x). The arc length condition
gives

∫ x

0

√

1 + f ′(u)2 du =

∫ θ

−π/2

√

g(φ)2 + g′(φ)2 dφ.

Differentiation with respect to x and simplification leads to the initial value problem

dθ

dx
=

1

g(θ)
, θ(0) = −π/2,

whose solution expresses θ as a function of x. The road is then given by y = −g(θ(x)).
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Exercise 3.11.1. Fill in the details of the derivation sketched above.

Example 3.11.1. Consider the ellipse with polar equation r =
k e

1− e sin θ
, where e is the eccentricity of

the ellipse and k is the distance from the origin to the corresponding directrix. The axle for this wheel is
the focus which is initially at the origin. The details get a bit messy (guess who gets to do them!) but no
special functions are required. The solution of the IVP turns out to be

a x

2 k e
= arctan

(

tan(θ/2)− e

a

)

+ arctan

(

1 + e

a

)

,

where a =
√
1− e2. Now take the tangent of both sides and do some trig to get

(1 + e)(1 − cos2(cx))

(1− e)(1 + cos(cx))2
=

1 + sin θ

1− sin θ
,

where c = a/(ke). Finally, solve for sin θ and substitute into y(x) =
k e

1− e sin θ(x)
to get the road

y = −k e
a2

(1− e cos (cx).

Thus, the road for an elliptic wheel with axle at a focus is essentially a cosine curve. Figure 3.11.2 illustrates
the case k = 1 and e = 1/

√
2.

Figure 3.11.2. The axle at a focus yields a cosine road.

Exercise 3.11.2. Fill in all the details in Example 3.11.1 for the case k = 1 and e = 1/
√
2.

Example 3.11.2. We now consider a rolling ellipse where the axle is at the center of the ellipse. The ellipse
x2/a2 + y2/b2 = 1 has polar representation r = b/

√
1−m cos2 θ, where m = 1− b2/a2 (assume a > b). The

IVP in θ and x is again separable and we get

∫ θ(x)

−π/2

dφ
√

1−m cos2 φ
=

∫ x

0

dt

b
.

The substitution ψ = φ+ π/2 yields

∫ θ(x)+π/2

0

dψ
√

1−m sin2 ψ
=
x

b
,

which involves an incomplete elliptic integral of the first kind. In terms of the Jacobian elliptic functions,
we get sin (θ + π/2) = sn(xb |m). The road is then

y =
−b

dn(xb |m)
= −b nd(x

b
| a

2 − b2

a2
).
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See Figure 3.11.3 for the a = 1 and b = 1/2 case.

-1 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Figure 3.11.3. The axle at the center leads to Jacobian elliptic functions.

Exercise 3.11.3. Fill in all the details in Example 3.11.2 for the case a = 1 and b = 1/2.

Exercise 3.11.4. Determine the road in terms of a Jacobian elliptic function for a center-axle elliptic wheel,
x2/a2 + y2/b2 = 1, when b > a.

3.12. Miscellaneous Integrals

Exercise 3.12.1. Evaluate

∫

∞

x

dt
√

(t2 − a2)(t2 − b2)
, where a > b. (See A&S, p. 596.)

Exercise 3.12.2. Evaluate

∫ x

a

dt
√

(t2 − a2)(t2 − b2)
, where a > b. (See A&S, p. 596.)

Exercises 3.12.3-7. Do Examples 8-12, A&S, pp.603-04.
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