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Chapter 4. Hypergeometric Functions

4.1. Solutions of Linear DEs at Regular Singular Points

Consider the differential equation

y′′(x) + p(x) y′(x) + q(x) y(x) = 0. (4.1.1)

If either p or q has a singularity at x = x0, then x0 is a singular point of (4.1.1). The singular point x0 is
regular if both the limits

lim
x→x0

(x− x0)p(x) and lim
x→x0

(x− x0)
2q(x)

exist. Call these limits, when they exist, p0 and q0. The exponents at the regular singular point x0 of (4.1.1)
are the roots of the indicial equation

r(r − 1) + p0r + q0 = 0.

If x0 is a regular singular point of (4.1.1), then one solution is representable as a Frobenius series and has
the form

y1(x) =

∞
∑

k=0

ak(r)(x − x0)
k+r (4.1.2)

where r is an exponent at x0, i.e., a root of the indicial equation. The coefficients ak can be found up to a
constant multiple by substituting the series into (4.1.1) and equating coefficients. Unfortunately, we are only
guaranteed one Frobenius series solution of (4.1.1), which is a second order linear homogeneous DE, and so
has two linearly independent solutions. The second solution in the neighborhood of a regular singular point
will take one of three forms.

Case 1. If the exponents do not differ by an integer, then the second solution of (4.1.1) is found by using
the other exponent in the series (4.1.2).

Case 2. If the exponents are equal, the second solution has the form

y2(x) = y1(x) log (x − x0) +
∞
∑

k=1

bk(r) (x − x0)
k+r ,

where r is the exponent and y1 is the solution given by (4.1.2).

Case 3. If the exponents r1 and r2 differ by a positive integer, r1 − r2 = N , then one solution is given by
(4.1.2) using r = r1, and the second solution has the form

y2(x) = C y1(x) log (x− x0) +

∞
∑

k=0

ck(r2) (x− x0)
k+r2 .

The constant C may or may not be zero.

Example 4.1.1. Legendre’s differential equation is

(1 − x2)y′′(x)− 2x y′(x) + n(n+ 1) y(x) = 0.

The most interesting case is when n is a nonnegative integer. At the regular singular point x = 1, the
indicial equation is r2 = 0, making the exponents at x = 1 equal to 0, 0. For simplicity using Frobenius
series, translate x = 1 to the origin by x = u+ 1. The equivalent DE is

u(u+ 2) y′′(u) + 2(u+ 1) y′(u)− n(n+ 1) y(u) = 0.

43



The regular singular point u = 0 corresponds to x = 1 and has the same exponents, both 0. The Frobenius

series is

∞
∑

k=0

aku
k, and substitution of the series into the DE yields

∞
∑

k=0

[

(k + n+ 1)(k − n)ak + 2(k + 1)2ak+1

]

uk = 0.

Equating coefficients leads to the recurrence relation

ak+1 =
−(k + n+ 1)(k − n)

2(k + 1)2
ak,

which gives

ak =
(−1)k(n+ 1)k(−n)k

2k(k!)2
a0.

The the (·)k notation represents the factorial function and is defined by (z)k = z(z + 1) · · · (z + k − 1) =
Γ(z + k)/Γ(z). The Frobenius series solution to Legendre’s DE is, for a0 = 1,

y1(x) = 1 +

∞
∑

k=1

(−n)k(n+ 1)k
(1)kk!

(

1− x

2

)k

.

Note that the series terminates if n is a nonnegative integer; the resulting polynomial is denoted Pn(x), and
is the Legendre polynomial of degree n. Also note that Pn(1) = 1 for all nonnegative integers n.

Exercise 4.1.1. Fill in all the details and verify all the claims in Example 4.1.1. Get comfortable dealing
with the factorial function.

Example 4.1.2. Bessel’s differential equation is

x2 y′′(x) + x y′(x) + (x2 − ν2) y(x) = 0.

The Frobenius series solution turns out to be

y1(x) =

∞
∑

k=0

(−1)kx2k+ν

22kk!(1 + ν)k
a0.

If we let a0 =
1

2νΓ(ν + 1)
, we get the “standard” solution to Bessel’s DE, the Bessel funtion of the first kind

of order ν, denoted by Jν(x):

Jν(x) =
(x/2)ν

Γ(ν + 1)

∞
∑

k=0

1

k!(1 + ν)k

(

−x2

4

)k

.

Exercise 4.1.2. For Bessel’s DE, show that x = 0 is a regular singular point with exponents ±ν, and fill
in the details in the derivation of the formula for Jν(x).

4.2. Equations of Fuchsian Type

Consider the differential equation

y′′(z) + p(z) y′(z) + q(z) y(z) = 0. (4.2.1)

We call (4.2.1) an equation of Fuchsian type if every singular point is a regular singular point.
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Lemma 4.2.1. If (4.2.1) is of Fuchsian type, then the number of singular points of (4.2.1) is finite.

Proof. At each singular point, either p or q has a pole. Suppose there are infinitely many singular points.
Then either p or q has infinitely many poles. These poles have a limit point (possibly ∞) which is an essential
singularity of p or q. But such an essential singularity corresponds to an irregular singular point of (4.2.1),
contradicting the assumption that (4.2.1) is of Fuchsian type. ♠

Suppose (4.2.1) is of Fuchsian type and has exactly m+1 distinct singular points, where m ≥ 2. Denote the
singularities by z = zk, k = 1, . . . ,m and z = ∞. Then p can have no singularities in the finite plane
except poles of order one at the zks. So,

p(z) =
p1(z)

(z − z1)(z − z2) · · · (z − zm)
,

where p1 is a polynomial. Also, q can have no singularities except poles of order ≤ two at the zks:

q(z) =
q1(z)

(z − z1)2(z − z2)2 · · · (z − zm)2
.

The maximum degree of the polynomials p1 and q1 can be determined using the regular singular point at
∞. Let z = 1/t, giving

d2y

dt2
+

1

t

[

2−
p1(

1
t )

t(1t − z1) · · · (
1
t − zm)

]

dy

dt
+

1

t2

[

q1(
1
t )

t2(1t − z1)2 · · · (
1
t − zm)2

]

y = 0. (4.2.2)

In order for z = ∞, or t = 0, to be a regular singular point, the functions in the brackets in (4.2.2) must be
analytic at t = 0. This means degree(p1) ≤ m − 1 and degree(q1) ≤ 2m − 2. Thus we have the following
theorem.

Theorem 4.2.1. If equation (4.2.1) is of Fuchsian type and has exactly m + 1 distinct singular points,
z = zk, k = 1, . . . ,m and z = ∞, then (4.2.1) can be written

y′′(z) +
T(m−1)(z)

ψ(z)
y′(z) +

T(2m−2)(z)

ψ2(z)
y(z) = 0,

where ψ(z) =

m
∏

k=1

(z − zk) and T(j)(z) is a polynomial of degree at most j in z.

Corollary 4.2.1. There exist constants Ak, k = 1, 2, . . . ,m such that p(z) =

m
∑

k=1

Ak

z − zk
.

Corollary 4.2.2. There exist constants Bk and Ck, k = 1, 2, . . . ,m, such that

q(z) =
m
∑

k=1

(

Bk

(z − zk)2
+

Ck

z − zk

)

, and
m
∑

k=1

Ck = 0.

Exercise 4.2.1. Prove both the above corollaries.

Equation (4.2.1) thus can be written in the form

y′′(z) +

m
∑

k=1

Ak

z − zk
y′(z) +

m
∑

k=1

(

Bk

(z − zk)2
+

Ck

z − zk

)

y(z) = 0, (4.2.3)
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where

m
∑

k=1

Ck = 0.

Denote the exponents at the singular point zk by α1,k and α2,k, and the exponents at ∞ by α1,∞ and α2,∞.
Since the indicial equation at zk is r2 + (Ak − 1)r +Bk = 0, we get

α1,k + α2,k = 1−Ak and α1,kα2,k = Bk.

For the singularity at ∞, we get

α1,∞ + α2,∞ = −1 +

m
∑

k=1

Ak and α1,∞α2,∞ =

m
∑

k=1

(Bk + Ckzk) .

Thus, the sum of all the exponents for all the singular points is

α1,∞ + α2,∞ +

m
∑

k=1

(α1,k + α2,k) = m− 1.

This number depends only on the number of singularities (and the order of the equation), and is the Fuchsian
invariant for the second order DE of Fuchsian type. For the Fuchsian DE of order n, the Fuchsian invariant
is (m− 1)n(n− 1)/2.

Example 4.2.1. A second order Fuchsian DE with m = 2 contains five arbitrary parameters, A1, A2, B1,
B2, and C1 = −C2. Also, there are six exponents, with sum one (Fuchsian invariant), such that

A1 = 1− α1,1 − α2,1

A2 = 1− α1,2 − α2,2

B1 = α1,1α2,1

B2 = α1,2α2,2

B1 +B2 + C1z1 + C2z2 = α1,∞α2,∞

C1 + C2 = 0

These relationships allow us to write (4.2.3) in terms of the exponents.

y′′(z)+

[

1− α1,1 − α2,1

z − z1
+

1− α1,2 − α2,2

z − z2

]

y′(z)+

[

α1,1α2,1

(z − z1)2
+

α1,2α2,2

(z − z2)2
+
α1,∞α2,∞ − α1,1,α2,1 − α1,2α2,2

(z − z1)(z − z2)

]

y(z) = 0. (4.2.4)

4.3. The Riemann-Papperitz Equation

Now assume (4.2.1) has three regular singular points, all finite, and that ∞ is an ordinary point. Denote the
singularities by a, b, and c and denote the corresponding exponents by a′ and a′′, b′ and b′′, and c′ and c′′.
Equation (4.2.1) then has the form

y′′(z) +
p2(z)

(z − a)(z − b)(z − c)
y′(z) +

q2(z)

(z − a)2(z − b)2(z − c)2
y(z) = 0. (4.3.1)

Exercise 4.3.1. Use the fact that ∞ is an ordinary point of (4.3.1) to show that: (i) p2 is a polynomial of
degree two with the coefficient of z2 equal to 2; (ii) q2 is a polynomial of degree ≤ 2.
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From Exercise 4.3.1, we see that there exist constants A1, A2, A3, B1, B2, and B3 such that

p2(z)

(z − a)(z − b)(z − c)
=

A1

z − a
+

A2

z − b
+

A3

z − c
,

q2(z)

(z − a)(z − b)(z − c)
=

B1

z − a
+

B2

z − b
+

B3

z − c

,

and A1 +A2 +A3 = 2. The form of the DE is now

y′′(z) +

[

A1

z − a
+

A2

z − b
+

A3

z − c

]

y′(z) +

[

B1

z − a
+

B2

z − b
+

B3

z − c

]

y(z)

(z − a)(z − b)(z − c)
= 0. (4.3.2)

Exercise 4.3.2. Using the indicial equations for (4.3.2), show that

a′ + a′′ = 1−A1

b′ + b′′ = 1−A2

c′ + c′′ = 1−A3

a′a′′ =
B1

(a− b)(a− c)

b′b′′ =
B2

(b− a)(b − c)

c′c′′ =
B3

(c− a)(c− b)

a′ + a′′ + b′ + b′′ + c′ + c′′ = 1

So, in terms of the exponents, (4.3.2) becomes

y′′(z)+

[

1− a′ − a′′

z − a
+

1− b′ − b′′

z − b
+

1− c′ − c′′

z − c

]

y′(z)+

[

a′a′′(a− b)(a− c)

z − a
+
b′b′′(b− a)(b − c)

z − b
+
c′c′′(c− a)(c− b)

z − c

]

y(z)

(z − a)(z − b)(z − c)
= 0.(4.3.3)

This is the Riemann-Papperitz equation. If y is a solution of the Riemann-Papperitz equation, we use the
Riemann P -function notation

y = P





a b c
a′ b′ c′ z
a′′ b′′ c′′



 .

The right side is simply a symbol used to explicitly exhibit the singularities and their exponents. If c is
replaced by ∞ then y satisfies the DE with c→ ∞. It can be shown that the results agree with what we got
in the last section.

There are two useful properties of the Riemann P-function we will need later.

Theorem 4.3.1. If a linear fractional transformation of the form

z =
At+B

Ct+D
=

(a− b)(a− c)(c1 − b1)(t− a1)

(a− b)(a1 − c1)(t− b1) + (a− c)(b1 − a1)(t− c1)
+ a

transforms a, b, and c into a1, b1, and c1 respectively, then

P





a b c
a′ b′ c′ z
a′′ b′′ c′′



 = P





a1 b1 c1
a′ b′ c′ t
a′′ b′′ c′′



 .

This can be verified by direct, but tedious, substitution.
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Theorem 4.3.2.

P





a b c
a′ b′ c′ z
a′′ b′′ c′′



 =

(

z − a

z − b

)k

P





a b c
a′ − k b′ + k c′ z
a′′ − k b′′ + k c′′



 .

Outline of Proof. If w(z) satisfies (4.3.3), let w(z) =

(

z − a

z − b

)k

w1(z). We will show that w1 satisfies an

equation of the form (4.3.3), but with the exponent a′ replaced by a′ − k. Corresponding to the regular
singular point z = a, there is a Frobenius series solution corresponding to the exponent a′:

w =

∞
∑

n=0

an (z − a)n+a′

.

Thus,

w1(z) = (z − b)k
∞
∑

n=0

an (z − a)n+a′
−k.

But (z − b)k is analytic at z = a, and has a series expansion around z = a

(z − b)k = (a− b)k +

∞
∑

n=1

bn (z − a)n,

so we can write

w1(z) =

∞
∑

n=0

cn (z − a)n+a′
−k

where c0 6= 0. Thus, the a′ in the symbol for the Riemann P-function for w becomes a′ − k in the symbol
for w1. The other three exponents are similar. ♠

Exercise 4.3.3. The transformation y(z) = f(z) v(z) applied to (4.2.1) yields

v′′ +

(

2
f ′

f
+ p

)

v′ +

(

f ′′

f
+ p

f ′

f
+ q

)

v = 0.

Also,
f ′

f
= (log f)′ and

f ′′

f
=

(

f ′

f

)

′

+

(

f ′

f

)2

. Now apply w(z) =

(

z − a

z − b

)k

w1(z) to (4.3.3). Show that

the indicial equation at z = a is transformed from

r2 − (a′ + a′′) r + a′a′′ = 0

into
r2 − (a′ + a′′ − 2k) r + k2 − (a′ + a′′) k + a′a′′ = 0.

Based on this work, prove Theorem 4.3.2.

4.4. The Hypergeometric Equation

Theorems 4.3.1 and 4.3.2 can be used to reduce (4.3.3) to a simple canonical form. Let w(z) be a solution

of (4.3.3) as before and let w(z) =

(

z − a

z − b

)a′

w1(z). Then by Theorem 4.3.2, w1 is a solution of the DE

corresponding to

P





a b c
0 b′ + a′ c′ z

a′′ − a′ b′′ + a′ c′′
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Another zero exponent can be obtained by letting w1(z) =

(

z − b

z − c

)b′+a′

w2(z) so that w2 is represented by

P





a b c
0 0 c′ + b′ + a′ z

a′′ − a′ b′′ − b′ c′′ + b′ + a′





Note that the sum of the six exponents is still 1. Now let α = a′+b′+c′, β = a′+b′+c′′, and γ = 1−a′′+a′.
The Riemann P-function representing w2 is now

P





a b c
0 0 α z

1− γ γ − α− β β



 .

Penultimately, use a linear fractional transformation to map a, b, and c to 0, 1, and ∞ respectively:

t =
(b− c)(z − a)

(b− a)(z − c)
.

Finally, rename t to be z. We have the Riemann P-function P





0 1 ∞
0 0 α z

1− γ γ − α− β β



, which corre-

sponds to the hypergeometric DE:

z(1− z)y′′(z) + [γ − (α+ β + 1)z] y′(z)− αβ y(z) = 0 (4.4.1)

Exercise 4.4.1. Fill in the details in the derivation of (4.4.1).

Since (4.4.1) has a regular singular point at z = 0 with one exponent 0, one solution has the form

y =
∞
∑

k=0

ak z
k

and the usual series manipulations lead to the recurrence relation

ak =
(k − 1 + α)(k − 1 + β)

k(k − 1 + γ)
ak−1.

If we set a0 = 1, we get the hypergeometric function F (α, β; γ; z) as a solution.

F (α, β; γ; z) =
∞
∑

k=0

(α)k(β)k
(γ)k k!

zk,

provided γ 6= 0,−1,−2, . . .. If we also assume γ 6= 1, 2, 3, . . . the solution around z = 0 corresponding to the
other exponent, 1− γ, is

y2(z) =
∞
∑

k=0

(1− γ + α)k(1− γ + β)k
(2− γ)k k!

zk+1−γ = z1−γF (1− γ + α, 1− γ + β; 2− γ; z)

Many known functions can be expressed in terms of the hypergeometric function. Here are some examples.

49



Example 4.4.1. Polynomials. If either α or β is zero or a negative integer the series terminates.

F (α, 0; γ; z) = 1, F (α,−n; γ; z) =

n
∑

k=0

(α)k(−n)k
(γ)k k!

zk.

Example 4.4.2. Logarithms. z F (1, 1; 2;−z) = log (1 + z) and 2z F (12 , 1;
3
2 ; z

2) = log 1+z
1−z .

Example 4.4.3. Inverse trigonometric functions.
z F (12 ,

1
2 ;

3
2 ; z

2) = arcsin z and z F (12 , 1;
3
2 ;−z

2) = arctan z.

Example 4.4.4. Rational functions and/or binomial expansions. F (α, β;β; z) = 1
(1−z)α = (1 − z)−α.

Example 4.4.5. Complete elliptic integrals. In the following, z is the modulus, not the parameter.
K(z) = π

2 F (
1
2 ,

1
2 ; 1; z

2), and E(z) = π
2 F (−

1
2 ,

1
2 ; 1; z

2).
(See Math Mag. 68(3), June 1995, p.216 for an article on the rate of convergence of these hypergeometric
functions.)

Exercises 4.4.2-6. Verify the claims in Examples 4.4.1-5.

Example 4.4.6. Legendre polynomials. For n a positive integer, Pn(z) = F (−n, n + 1; 1; 1−z
2 ). This can

be seen from the form of the series solution (see Example 4.1.1)), or can be derived directly from Legendre’s
DE, (1− z2)y′′(z)− 2z y′(z) + n(n+ 1) y(z) = 0, n a positive integer. The regular singular points are at ±1
and ∞, and the transformation t = 1−z

2 takes 1 → 0, −1 → 1, and ∞ → ∞. The DE becomes

t(1− t)y′′(t) + (1 − 2t)y′(t) + n(n+ 1)y(t) = 0,

which can be seen to be the hypergeometric DE in t with α = −n, β = n+ 1, and γ = 1.

Exercise 4.4.7. F (α, β; γ; z) = F (β, α; γ; z).

Exercise 4.4.8.
d

dz
F (α, β; γ; z) =

αβ

γ
F (α+ 1, β + 1; γ + 1; z).

Hypergeometric functions in which α, β, or γ are replaced by α± 1, β ± 1, or γ ± 1 are called contiguous to
F (α, β; γ; z). Gauss proved that F (α, β; γ; z) and any two of its contiguous functions are related by a linear
relation with coefficients linear functions of z. The following exercises illustrate two such relations. There
are many more.

Exercise 4.4.9. (γ − α− β)F (α, β; γ; z) + α(1 − z)F (α+ 1, β; γ; z)− (γ − β)F (α, β − 1; γ; z) = 0.

Exercise 4.4.10. F (α, β + 1; γ; z)− F (α, β; γ; z) = α z
γ F (α+ 1, β + 1; γ + 1; z).

The infinite product result in Section 2.5 can be used to evaluate F (α, β; γ; 1) in terms of gamma functions.
Details can be found in Whittaker and Watson, pp. 281-2. Limits are necessary because z = 1 is a singular
point of the hypergeometric differential equation.

F (α, β; γ; 1) =
Γ(γ) Γ(γ − α− β)

Γ(γ − α) Γ(γ − β)
.
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4.5. Confluence of Singularities

Many differential equations of interest have an irregular singular point. The harmonic oscillator equation,
y′′ + y = 0, has an irregular singularity at ∞, for example. The results for DEs of Fuchsian type can be
used to study such equations under the right circumstances. We may let two singularities come together
and become an irregular singular point provided: (1) at least one of the corresponding exponents approaches
∞ and (2) the DE has a limiting form. This process, when posible, is called confluence. In this section we
describe a general method to transform a Fuchsian DE by confluence into a DE with an irregular singularity.

Suppose we have a Fuchsian DE with singularities at 0, c, and ∞ and that the exponents at z = c and
z = ∞ depend on c. In order for the DE to have a limiting form as c→ ∞, it is necessary to require that the
exponents at c and ∞ are linear functions of c. This will be assumed without proof. Thus, we can represent
a solution of the DE by the Weierstrass P-function

P





0 c ∞
α1,1 α1,2 + c β1,2 α1,∞ + c β1,∞ z
α2,1 α2,2 + c β2,2 α2,∞ + c β2,∞



 .

From (4.2.4) we get

y′′(z)+

[

1− α1,1 − α2,1

z
+

1− α1,2 − α2,2 − c(β1,2 + β2,2)

z − c

]

y′(z)+

[

α1,1α2,1

z2
+
α1,2α2,2 + c(α1,2β2,2 + α2,2β1,2) + c2β1,2β2,2

(z − c)2

]

y(z)+

[

α1,∞α2,∞ − α1,1,α2,1 − α1,2α2,2

z(z − c)

]

y(z)+ (4.5.1)

[

c(α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2) + c2(β1,∞β2,∞ − β1,2β2,2)

z(z − c)

]

y(z) = 0.

If a limiting form is to exist, we must have β1,∞β2,∞ − β1,2β2,2 = 0 to avoid the last term in (4.5.1) blowing
up. The Fuchsian invariant has value 1, so

α1,1 + α2,1 + α1,2 + α2,2 + α1,∞ + α2,∞ + c(β1,2 + β2,2 + β1,∞ + β2,∞) = 1.

This equation must hold for all c and for αs and βs independent of c, so

β1,2 + β2,2 + β1,∞ + β2,∞ = 0

α1,1 + α2,1 + α1,2 + α2,2 + α1,∞ + α2,∞ = 1.

Now let c→ ∞, giving

y′′(z)+

[

1− α1,1 − α2,1

z
+ β1,2 + β2,2

]

y′(z)+

[

α1,1α2,1

z2
+ β1,2β2,2 −

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2
z

]

y(z) = 0. (4.5.2)

Exercise 4.5.1. Verify that equation (4.5.1) has an irregular singularity at ∞.

Example 4.5.1. Confluence can be used to obtain Bessel’s DE of order n. This DE has a regular singular
point at z = 0 and an irregular singular point at z = ∞. The exponents at 0 are ±n, so α1,1 = n and
α2,1 = −n, making (4.5.1)

y′′(z)+

[

1

z
+ β1,2 + β2,2

]

y′(z)+

[

−n2

z2
+ β1,2β2,2 −

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2
z

]

y(z) = 0.
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We want to get Bessel’s DE,

y′′(z) +
1

z
y′(z) +

(

1−
n2

z2

)

y(z) = 0,

so, including the condition for the existence of a limiting form and the Fuchsian invariant, we get the following
system of equations for the parameters.

β1,2 + β2,2 = 0

β1,2β2,2 = 1

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2 = 0

β1,∞β2,infty − β1,2β2,2 = 0

β1,2 + β2,2 + β1,∞ + β2,∞ = 0

α1,2 + α2,2 + α1,∞ + α2,∞ = 1

Since there are six equations in eight unknowns, any solution will contain two undetermined parameters.
One such solution is

β1,2 = i, β2,2 = −i, β1,∞ = i, β2,∞ = −i, α1,∞ = 1
2 − α2,2, α2,∞ = 1

2 − α1,2.
This shows that if we let c→ ∞ in the DE defined by

P





0 c ∞
n α1,2 + ic 1

2 − α2,2 + ic z
−n α2,2 − ic 1

2 − α1,2 − ic



 ,

the result is Bessel’s DE.

Exercise 4.5.2. Fill in the details in Example 4.5.1.

The point of this section is that by means of the process of confluence, known results about the Fuchsian
DE can suggest new results or avenues of study for the DE with an irregular singularity. The example
involving Bessel’s equation is to be taken as an illustration of the process. Actually, much more is known
about Bessel’s DE than the Fuchsian DE.

Exercise 4.5.3. Show that the confluent equation obtained by letting c→ ∞ in the DE defined by

P





0 c ∞
1
2 +m c− k −c z
1
2 −m k 0





is
d2u

dz2
+
du

dz
+

(

k

z
+

1
4 −m2

z2

)

u = 0. Then let u = e−z/2Wk,m(z) to get Whittaker’s equation for Wk,m:

d2W

dz2
+

[

−
1

4
+
k

z
+

1
4 −m2

z2

]

W = 0.

Verify that Whittaker’s equation has a regular singular point at 0 and an irregular singular point at ∞.
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4.6. Generalized Hypergeometric Functions

A little time spent studying the series form of the basic hypergeometric function,

F (α, β; γ; z) =

∞
∑

k=0

(α)k(β)k
(γ)k

zk

k!
,

will suggest the question, “Why be restricted to just α, β, and γ for the factorial functions? Why not allow
an arbitrary number of factorials in both numerator and denominator?” (OK, that’s two questions, but, as
you may know, there are three kinds of mathematicians: those who can count and those who cannot.) Thus
we are led to consider the generalized hypergeometric functions, denoted pFq(α1, . . . , αp; γ1, . . . , γq; z) and
defined by

pFq(α1, . . . , αp; γ1, . . . , γq; z) =

∞
∑

k=0

∏p
i=1(αi)k

∏q
j=1(γj)k

zk

k!
.

Exercise 4.6.1. If p ≤ q, the series for pFq converges for all z.

Exercise 4.6.2. If p = q + 1, the series converges for |z| < 1 and, unless it terminates, diverges for |z| ≥ 1.

Exercise 4.6.3. If p > q + 1, the series, unless it terminates, diverges for z 6= 0.

Either p or q or both may be zero, and if this occurs, the absence of parameters will be denoted by a dash,
−, in the appropriate position.

Example 4.6.1. 0F0(−;−; z) =

∞
∑

k=0

zk

k!
= ez.

Example 4.6.2. 1F0(α;−; z) = F (α, β;β; z) = (1− z)−α.

Example 4.6.3. 0F1(−; γ; z) =
∞
∑

k=0

zk

(γ)kk!
, and from this we get Jν(z) =

(z/2)ν

Γ(ν+1) 0F1(−; ν + 1;− z2

4 ).

Since the hypergeometric function came from the hypergeometric DE, the generalized hypergeometric func-
tions should also satisfy appropriate DEs. Let the differential operator θ = z d

dz . In terms of θ, the
hypergeometric DE is

[θ(θ + γ − 1)− z(θ + α)(θ + β)] y = 0.

Now if

y(z) = pFq(z) =

∞
∑

k=0

(α1)k · · · (αp)k
(γ1)k · · · (γq)k

zk

k!
,

and since θ zk = k zk, we get

θ

q
∏

j=1

(θ + γj − 1) y =

∞
∑

k=1

k
∏q

j=1(k + γj − 1)
∏p

i=1(αi)k
∏q

j=1(γj)k

zk

k!
=

∞
∑

k=1

∏p
i=1(αi)k

∏q
j=1(γj)k−1

zk

(k − 1)!
.

Shifting the index gives

θ

q
∏

j=1

(θ + γj − 1) y =

∞
∑

k=0

∏p
i=1(αi)k+1
∏q

j=1(γj)k

zk+1

k!
= z

∞
∑

k=0

∏p
i=1(αi + k)

∏p
i=1(αi)k

∏q
j=1(γj)k

zk

k!
= z

p
∏

i=1

(θ + αi) y.

53



Thus, if p ≤ q + 1, we see that y = pFq satisfies



θ

q
∏

j=1

(θ + γj − 1)− z

p
∏

i=1

(θ + αi)



 y = 0.

This DE is of order q + 1 and, if no γj is a positive integer and no two γj ’s differ by an integer, the general
solution is

y =

q
∑

m=0

cm ym

where, for m = 1, 2, . . . , q,

y0 = pFq(α1, . . . , αp; γ1, . . . , γq; z)

ym = z1−γm

pFq(α1 − γm + 1, . . . , αp − γm + 1;

γ1 − γm + 1, . . . , γm−1 − γm + 1, 2− γm, γm+1 − γm + 1, . . . , γq − γm + 1; z)

Exercise 4.6.4. Find the DE satisfied by 3F2(2, 2, 2;
5
2 , 4; z). Also find the general solution of this DE.

Exercise 4.6.5. Show that if y1 and y2 are linearly independent solutions of

y′′(z) + p(z) y′(z) + q(z) y(z) = 0

then three linearly independent solutions of

w′′′(z) + 3p(z)w′′(z) +
(

2p2(z) + p′(z) + 4q(z)
)

w′(z) + (4p(z)q(z) + 2q′(z)) w(z) = 0

are y21(z), y1(z)y2(z), and y
2
2(z).

Exercise 4.6.6. Show that 3F2(2, 2, 2;
5
2 , 4; z) =

(

F (1, 1; 52 ; z)
)2
. [Hint: Use Exercises 4.6.4 and 4.6.5.]
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