
©

Leon M. Hall

Special Functions

Copyright c 1995 by Leon M. Hall. All rights reserved.

Professor of Mathematics

University of Missouri-Rolla



∑

∑

∑

∑

[ ]

∑

∞

∞

∞

∞

− −

∞

=0

=0

=0

=0

=0

{ }
{ }

{ } { }

−

| |

{ }

−

−

generating function

k

k
k

k

k

k

k

k

k

k k
k

k

k
k

k

k k

k

k

k
k

x

xt xt
x

xt

xt

k

k
k

t

Chapter 5. Orthogonal Functions

5.1. Generating Functions

Definition 5.1.1.

Example 5.1.1.

Exercise 5.1.1.

Example 5.1.2.
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The function is a for the sequence if there exists a
sequence of constants such that

One special case is when the coefficients are successive powers of the same function. Let
. Then the generating function can be found using the formula for the sum of a geometric

series.

provided .

Find the generating function for the sequence .

The Bernoulli functions. Let . Termwise differentiation with respect

to and properties of the Bernoulli functions (section 1.3) yields . Thus,

and so for each there is a function such that , and we have

Integration of (5.1.1) over the interval and properties of the Bernoulli functions give

Consider a function of two variables, ( ), and its formal power series expansion in the variable :

( ) = ( )

The coefficients in this series are, in general, functions of , and we can think of them as having been

“generated” by the function . In fact, ( ) =
1

!
( 0), though there may be better ways to compute

them. If this idea is extended slightly, we get the following definition:

( ) ( )

( ) = ( )

It is not uncommon for all the s to be one. One of the principal problems involving generating functions
is determining a generating function for a given set or sequence of polynomials. Especially desirable is a
general theory which can be used to get generating functions. Unfortunately, no such theory has yet been
developed, so we must be content with results for special cases found using manipulative dexterity.

( ) = ( ( ))

( ) = ( ( )) =
1

1 ( )

( ) 1

( ( ))

Many sets of elementary and special functions have known generating functions. Here are some examples.

( ) = ( )

( ) = ( )

( ) = [ ( ) ( )] = 0

( ) ( ) = ( )

( ) = ( ) (5 1 1)

[0 1]

( ) =
1
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Exercise 5.1.2.

Example 5.1.3.

Exercise 5.1.3.

Example 5.1.4.

Example 5.1.5.

Exercise 5.1.4.

Exercise 5.1.5.

Theorem 5.1.1.

Proof.

( ) =
1

(1 2 + ) = ( )

exp
1

2
(

1
) = ( )

( )

exp 2 =
( )

!

cos 2 =
( 1) ( )

(2 )!

sin 2 =
( 1) ( )

(2 + 1)!

The generating functions for both the Legendre and the Hermite polynomials are functions of the form
(2 ). The following theorem is representative of theorems which give properties common to all sets

of functions having generating functions of this form.

(2 ) = ( ) ( ) = 0 1

( ) ( ) = ( )

Let ( ) = (2 ) = ( ) . Then satisfies the PDE ( ) = 0. In

terms of the series, this PDE is

( ) ( ) = ( )

Equating coefficients gives the desired result.

56

Thus, the generating function for the Bernoulli functions is .

Fill in the details in Example 5.1.2.

Legendre polynomials: .

Use Taylor’s theorem to verify the first three coefficients in the generating function relation
for the Legendre polynomials.

Bessel functions: .

Hermite polynomials. Denote the Hermite polynomial of degree by . Then

.

Find the first four Hermite polynomials.

Prove the expansions

for . These expressions can be thought of as generating functions for the even and odd Hermite
polynomials.

If , then and, for , the s satisfy the differential-

difference equation
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Exercise 5.1.6.

5.2. Orthogonality

Theorem 5.2.1.

Exercise 5.2.1.

Example 5.2.1 (Legendre).

Sturm-Liouville form
Sturm-Liouville problem

eigenvalues eigen-
functions

orthogonal

normalized
orthonormal

R
xt t R xt t

a x y a x y a x λ y .

p x dx q x p x r x

p x y q x λ r x y . . .

λ

y y
a, b

r x y x y x dx . . .

y y r x

x y x y n n y

x y n n y .

p x x q x r x λ n n x
,

n , , , . . . P x , P x , P x , . . .

P x P x dx

m n

In A&S, pages 783-4, a number of generating functions are given as functions of
. Formulate and prove the equivalent of Theorem 5.1.1 using in place of .

Under appropriate conditions, if and are eigenfunctions corresponding to distinct
eigenvalues of the SLP associated with (5.2.1) on the interval , then

What do you call a tornado at the Kentucky Derby?

Legendre’s DE, as we have seen, is . In
Sturm-Liouville form, this becomes

Here, , , , , and . Since are regular singular points, we can be
sure solutions exist on the closed interval only when the solutions are polynomials, so the eigenvalues
are and the eigenfunctions are the corresponding Legendre polynomials .
By Theorem 5.2.1 we have

whenever and are distinct nonnegative integers.

=
1 2 + 2

Consider the DE

( ) + ( ) + [ ( ) + ] = 0

Multiply by the “integrtating factor” ( ) = exp , let ( ) = ( ), and ( ) = , to get the

DE into the form

[ ( ) ] + [ ( ) + ( )] = 0 (5 2 1)

Equation (5.2.1) is said to be in and if appropriate boundary conditions are specified
on an interval we have a . Values of for which a Sturm-Liouville problem (SLP)
has nontrivial solutions are called of the SLP and the corresponding solutions are called

. These ideas are studied in detail in courses on partial differential equations and boundary value
problems where the SLP arises naturally in the solution of PDEs with boundary conditions. The following
theorem, stated here rather vaguely, is proved in such courses.

[ ]

( ) ( ) ( ) = 0 (5 2 2)

When equation (5.2.2) holds, we say that and are with respect to the weight function ( ).
This equation can, in fact, be taken as the definition of orthogonality.

(1 ) 2 + ( + 1) = 0

(1 ) + ( + 1) = 0

( ) = 1 ( ) 0 ( ) 1 = ( +1) = 1
[ 1 1]

= 0 1 2 ( ) ( ) ( )

( ) ( ) = 0

The orthogonality integral is a generalization to functions of the dot product for vectors, and since the dot
product of a vector with itself is the square of the length of the vector, the integral in (5.2.2) with both
eigenfunctions the same can be interpreted as the “length” squared of the eigenfunction. Often, we want
this length to be one for all the eigenfunctions, in which case we say that the eigenfunctions are .
Since the eigenfunctions are orthogonal by (5.2.2), if they are also normalized, we say they are .
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Example 5.2.1 (continued).

Exercise 5.2.2.

Example 5.2.2 (Bessel).

Theorem 5.2.2.

Outline of Proof.

P x dx

xt t P x t

xt t P x t

t

t

t
t P x dx

t t t

n
t P x dx.

P x dx
n

.

n x y x y
λ x n y

x y λ x
n

x
y .

, b λ α k J x
m k

x J λ x J λ x dx .

n
λ α

φ x r x > a, b
φ x r x k , , , . . . , n

r x x φ x dx .

m < n
x x x x

φ x φ x

We now determine using the generating function.

Equating coefficients gives the for the Legendre polynomials:

Fill in the details in Example 5.2.1.

Bessel’s DE of order , (slightly modified - do you see how?)
, written in Sturm-Liouville form is

For the interval , the eigenvalues are , where is the positive zero of . The orthogo-
nality integral is, for ,

Note here that is fixed, and the different eigenvalues and eigenfunctions are denoted by the subscripts on
or .

If is a simple set of real polynomials and on an interval , then
is an orthogonal set with respect to the weight function if and only if for ,

( )

(1 2 + ) = ( )

(1 2 + ) = ( )

1
log

1 +

1
= ( )

2 1 +
3

+
5

+ +
2 + 1

+ = ( )

( ) =
2

2 + 1

+ +
( ) = 0

[ ] + = 0

[0 ] = ( )
=

( ) ( ) = 0

For sets of polynomials, the following equivalent condition for orthogonality is often useful. We call a set of
polynomials if the set contains exactly one polynomial of each degree; unless stated otherwise, the
degree of a subscripted polynomial is equal to its subscript.

( ) ( ) 0 ( )
( ) ( ) = 0 1 2 1

( ) ( ) = 0

The proof is based first on the fact that any polynomial of degree can be written
as a linear combination of powers of from through . Then the fact that can be expressed as a
linear combination of ( ) through ( ) is used. Details are left to the student.

58



∞

−

∞

−

∫
∫

∫

∏

∫

∑

∫ ∑ ∫

=1

=1

=0

1

1 =0

1

1

{ }

6

{ }

{ }

≤

−

♠

−

∈ −
−

n
b

a
n

b

a

n
n

n

n

b

a
n

n k
s
k

n n n

s

k

k

b

a
n

n n

n

n

n

n n

m

m

n

n m n m

Exercise 5.2.3.

Exercise 5.2.4.

Theorem 5.2.3.

Proof.

5.3. Series Expansions

Example 5.3.1.

φ x r x >

a, b P n r x φ x P x dx

r x x φ x dx

φ x
r x > a, b n φ a, b

n > r x φ x dx

a, b r x > φ x a, b α
φ x a, b φ φ n

s n

P x x α .

s < n

r x φ x P x dx .

φ x P x r x φ x P x a, b
s < n s n φ n

a, b φ n

x

f , f x

f x c P x . .

x , P x

f x P x dx c P x P x dx
m

c ,

Prove Theorem 5.2.2.

Prove that if is a simple set of real polynomials and on an inter-

val , then for every polynomial of degree less than , . Also prove that

.

If is a simple set of real polynomials, orthogonal with respect to a weight function
on an interval , then, for each , the zeros of are distinct and all lie in the interval .

Let be defined in the interval , and expand in a series of Legendre polyno-
mials. In other words, we want to determine the coefficients in

so that equality holds for . Proceeding formally, we multiply both sides by and integrate
from to .

( ) ( ) 0

( ) ( ) ( ) ( ) = 0

( ) ( ) = 0

The interesting part of a polynomial is near the zeros. After the last zero and before the first one, polynomials
are rather boring - they either go up, up, up, or down, down, down.

( )
( ) 0 ( ) ( )

For 0, by Theorem 5.2.2 ( ) ( ) = 0, so the integrand must change sign at least once

in ( ), and since ( ) 0, this means ( ) changes sign in ( ). Let be the set of points where
( ) changes sign in ( ). These are the zeros of of odd multiplicity, and since the degree of is ,

we know that . Form the polynomial

( ) = ( )

Assume . Then by Exercise 5.2.4,

( ) ( ) ( ) = 0

But all the zeros of ( ) ( ) are of even multiplicity, so ( ) ( ) ( ) cannot change sign in ( ).
Hence, is not possible, and we must have = . This means that has roots of odd multiplicity
in ( ). Since the degree of is , each root is simple, and the theorem is proved.

An important application of orthogonal polynomials in physics and engineering is the expansion of a given
function in a series of the polynomials. For a simple set of polynomials, the powers of in the usual series
representation are replaced by the polynomials of appropriate degree. Of course, the problem is to find the
coefficients in such a series expansion, and this is where orthogonality becomes quite useful.

( 1 1) ( )

( ) = ( ) (5 3 1)

( 1 1) ( )
1 1

( ) ( ) = ( ) ( ) =
2

2 + 1
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Theorem 5.3.1.

Exercise 5.3.1.

Exercise 5.3.2.

Exercise 5.3.3.

Exercise 5.3.4.

Exercise 5.3.5.

Exercise 5.3.6.

n , , , . . .

c n f x P x dx. . .

f x

f x

f , f x dx

f x f
x

f x x

f x x

f x
, x < α
, α < x

x α

f x

F x, t t F

H x nH x F x, t x t F

H x xH x nH x . . .

y x x y x n y x .

e H x dx n

n H x H x

which implies that, for

If the real function is piecewise smooth in the interval and if is finite,

then the Legendre series (5.3.1) with coefficients given by (5.3.2) converges to wherever is continuous.
If is a point of discontinuity, the series converges to the average of the right-hand and left-hand limits of

at .

Expand in a series of Legendre polynomials.

Expand in a series of Legendre polynomials, and verify the

value at .

Express in a series of Legendre polynomials. Calculate the coefficients by

using the generating function.

Show that the generating function for the Hermite polynomials satisfies

, and so . Similarly, show that satisfies , and so

Show that the Hermite polynomials satisfy the differential equation (Hermite’s DE)

Write Hermite’s DE in Sturm-Liouville form and determine the interval and the weight function for the
orthogonality of the Hermite polynomials.

In this exercise, you will calculate . Begin by replacing the index in

(5.3.3) by and multiply by . Then from this equation subtract (5.3.3) multiplied by .

= 0 1 2

= ( +
1

2
) ( ) ( ) (5 3 2)

This procedure is neat, clean, and algorithmic, but we took some mathematical liberties which should at
least be acknowledged. In particular, how did we know that ( ) could be represented as in (5.3.1) in
the first place, and also, was it legitimate to interchange the operations of integration and summation?
Unless these points are cleared up, we have no guarantee, except faith, that (5.3.1) with coefficients given by
(5.3.2) converges and has sum ( ). Another concern is that even if we can be sure the procedure works for
Legendre polynomials, will a similar procedure be valid for a different set of simple orthogonal polynomials?
Fortunately, for a given set of orthogonal polynomials, there are conditions which do guarantee that equations
(5.3.1) and (5.3.2) or their equivalents are valid. Unfortunately, the conditions are different for different sets
of polynomials. Proofs get somewhat involved, and are omitted here, but interested readers may consult
Lebedev or Whittaker and Watson.

( 1 1) ( )

( )

( )

( ) =

( ) =
0 1
1 1

=

( ) =

It is possible to derive all properties of a set of orthogonal polynomials by starting with only the generating
function. The following series of exercises builds up some results about the Hermite polynomials defined in
Example 5.1.5.

( ) 2 =

0 ( ) = 2 ( ) ( ) 2( ) = 0

( ) 2 ( ) + 2 ( ) = 0 (5 3 3)

( ) 2 ( ) + 2 ( ) = 0

( )

1 ( ) ( )
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Exercise 5.3.7.
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∞

−∞

−

e H x dx n e H x dx

n , , . . . n , , . . .

e H x dx n π. . .

n ,

e f x dx

f x sgn x
, x <
, x >

( ) = 2 ( )

= 2 3 = 2 3

( ) = 2 ! (5 3 4)

= 0 1

There is a result for Hermite polynomials corresponding to Theorem 5.3.1, in which the integral required to

be finite is ( ) .

( ) = ( ) =
1 0

1 0

61

Work with this result to obtain

for . Repeated application of this reduction formula gives, for ,

Finally, show by direct calculation that (5.3.4) also holds for .

Expand in a series of Hermite polynomials.



References

Handbook of Mathematical Functions

Analytic Geometry and Calculus, with Vectors

Tables of Functions

Special Functions and Their Applications

The Special Functions and Their Approximations

Jacobian Elliptic Function Tables

Special Functions

Intermediate Course in Differential Equations

Theory and Problems of Advanced Calculus

A Course of Modern Analysis

[1] Abramowitz, M., and Stegun, I. (eds.), , Dover, New York, 1965

[2] Agnew, R., , McGraw-Hill, New York, 1962

[3] Jahnke, E., and Emde, F. , , Dover, New York, 1945

[4] Lebedev, N., , Dover, New York, 1972

[5] Luke, Y., (2 vols.), Academic Press, New York, 1969

[6] Milne-Thompson, L., , Dover, New York 1950

[7] Rainville, E., , MacMillan, New York, 1960

[8] Rainville, E., , Wiley, New York, 1943

[9] Spiegel, M., , Schaum, New York, 1963

[10] Whittaker, E. and Watson, G., , Cambridge, London, 1963

62


