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Chapter 1. Euler, Fourier, Bernoulli, Maclaurin, Stirling

1.1. The Integral Test and Euler’s Constant

Suppose we have a series
∞∑
k=1

uk of decreasing terms and a decreasing function f such that f(k) = uk,

k = 1, 2, 3, . . .. Also assume f is positive, continuous for x ≥ 1, and lim
x→∞

f(x) = 0.

1 2 3 n-1 n n+1

T1

T2
T3

Tn-1

Figure 1

Look at Figure 1 to convince yourself that

n∑
k=1

uk =
∫ n

1

f(x) dx+ |T1|+ |T2|+ · · ·+ |Tn−1|+ un.

The left side is the sum of the areas of the rectangles on unit bases with heights u1, u2, . . . , un determined
from the left end point. |Tk| denotes the area of the triangular-shaped pieces Tk bounded by x = k + 1,
y = uk, and y = f(x). Slide all the Tks left into the rectangle with opposite vertices (0, 0) and (1, u1) and
set

An = |T1|+ |T2|+ · · ·+ |Tn−1|
Clearly (make sure it is clear), 0 < A2 < A3 < · · · < An < u1, so {An} is a bounded monotone sequence
which has a limit:

0 < lim
n→∞

An = lim
n→∞

[|T1|+ |T2|+ · · ·+ |Tn−1|] = C ≤ u1.

Let Cn = An + un. We have proved the following result, which should be somewhat familiar.

Theorem 1.1.1 (Integral Test). Let f be positive, continuous and decreasing on x ≥ 1. If f(x) → 0 as
x→∞, and if f(k) = uk for each k = 1, 2, 3, . . ., then the sequence of constants {Cn}∞n=1 defined by

n∑
k=1

uk =
∫ n

1

f(x) dx+ Cn

converges, and 0 ≤ lim
n→∞

Cn = C ≤ u1.

Corollary 1.1.1 (Calculus Integral Test). Let f be positive, continuous and decreasing on x ≥ 1. If
f(x)→ 0 as x→∞, and if f(k) = uk for each k = 1, 2, 3, . . ., then the series

∞∑
k=1

uk

1



converges if and only if the improper integral ∫ ∞
1

f(x) dx

converges.

Example 1.1.1 (The Harmonic Series). f(x) = 1/x, uk = 1/k . By the theorem, the sequence {γn}
defined by

n∑
k=1

1
k

=
∫ n

1

1
x
dx+ γn

converges, say to γ, where

γ = lim
n→∞

[
n∑
k=1

1
k
− logn

]
.

The number γ is called Euler’s constant, or the Euler-Mascheroni constant and has value

γ = 0.5772 15664 90153 28606 06512 09008 . . .

It is currently not known whether γ is even rational or not, let alone algebraic or transcendental.

Exercise 1.1.1. Use the above definition and Mathematica or Maple to find the smallest value of n for
which γ is correct to four decimal places. Later, we will develop a better way to get accurate approximations
of γ.

Example 1.1.2 (The Riemann Zeta Function). f(x) = 1/xs, s > 1. Now the theorem gives

n∑
k=1

1
ks

=
1

s− 1

(
1− 1

ns−1

)
+ Cn(s)

where 0 < Cn(s) < 1. Let n→∞, giving

∞∑
k=1

1
ks

=
1

s− 1
+ C(s)

with 0 < C(s) < 1. The summation is the real part of the Riemann zeta function, ζ(s), a function with
many interesting properties, most of which involve its continuation into the complex plane. However, for the
real part we get that

ζ(s) =
1

s− 1
+ C(s),

where 0 < C(s) < 1.

We shall return to both these examples later.

1.2. Fourier Series

Let L > 0 and define the functions
{
φk(x)

}∞
k=1

on [0, L] by

φk(x) =

√
2
L

sin
kπx

L
.

2



Exercise 1.2.1. Verify that these functions satisfy∫ L

0

∣∣∣φk(x)
∣∣∣2 dx = 1,

and, if j 6= k, ∫ L

0

φj(x)φk(x) dx = 0.

If these two conditions are satisfied, we call {φk(x)}∞k=1 an orthonormal set over [0, L].

Now let f be defined on [0, L], and assume that
∫ L

0 f(x) dx and
∫ L

0

∣∣∣f(x)
∣∣∣2 dx both exist. Define the Fourier

coefficients of f by

ak =
∫ L

0

f(x)φk(x) dx.

We want to approximate f(x) by a linear combination of a finite subset of the above orthonormal set.

Exercise 1.2.2. Show that, for any positive integer n,∫ L

0

∣∣∣f(x)−
n∑
k=1

ckφk(x)
∣∣∣2 dx =

∫ L

0

∣∣∣f(x)
∣∣∣2 dx − n∑

k=1

∣∣∣ak∣∣∣2 +
n∑
k=1

∣∣∣ck − ak∣∣∣2,
and that the left side of this expression is a minimum when ck = ak, k = 1, 2, . . . , n. Note that this is a least
squares problem.

So,
∫ L

0

∣∣∣f(x)−
∑n

k=1 akφk(x)
∣∣∣2 dx =

∫ L
0

∣∣∣f(x)
∣∣∣2 dx−∑n

k=1

∣∣∣ak∣∣∣2, and, since the left side cannot be negative,

n∑
k=1

∣∣∣ak∣∣∣2 ≤ ∫ L

0

∣∣∣f(x)
∣∣∣2 dx.

Since this inequality is true for all n, we have Bessel’s Inequality:

∞∑
k=1

∣∣∣ak∣∣∣2 ≤ ∫ L

0

∣∣∣f(x)
∣∣∣2 dx.

Notice that the important thing about the set {φk(x)} was that it was an orthonormal set. The specific
sine functions were not the main idea. Given an orthonormal set and a function f , we call

∑∞
1 ak φk(x) the

Fourier series of f . For our purposes, the most important orthonormal sets are those for which

lim
n→∞

∫ L

0

∣∣∣f(x)−
n∑
k=1

akφk(x)
∣∣∣2 dx = 0.

Orthonormal sets with this property are complete. Some examples of complete orthonormal sets follow. The
first two are defined on [0, L] and the third one on [−L,L].

{√
2
L

sin
kπx

L

}∞
k=1

(ON1)

3



{√
1
L
,

√
2
L

cos
πx

L
,

√
2
L

cos
2πx
L
, . . .

}
(ON2)

{√
1

2L
,

√
1
L

cos
πx

L
,

√
1
L

sin
πx

L
,

√
1
L

cos
2πx
L
,

√
1
L

sin
2πx
L
, . . .

}
(ON3)

There are other complete orthonormal sets, some of which we will see later.

For a given orthonormal set, the Fourier series
∑∞

k=1 ak φk(x) is equal to f(x) on −∞ < x <∞ for periodic
functions f with period 2L provided

(1) f is bounded and piecewise monotone on [−L,L],

(2) lim
h→0

f(x+ h) + f(x− h)
2

= f(x),

(3) f is odd when (ON1) is the orthonormal set,

(4) f is even when (ON2) is the orthonormal set.

1.3. Bernoulli Functions and Numbers

The Bernoulli functions, B0(x), B1(x), B2(x), . . ., satisfy the following conditions on −∞ < x <∞:

B0(x) = 1

B′n(x) = Bn−1(x), n = 1, 2, 3, . . .∗∫ 1

0

Bn(x) dx = 0, n = 1, 2, 3, . . .

Bn(x+ 1) = Bn(x), n = 1, 2, 3, . . .

Exercise 1.3.1. Show that there exist constants B0, B1, B2, . . . such that for 0 < x < 1

B0(x) =
B0

0!0!

B1(x) =
B0x

0!1!
+
B1

1!0!

B2(x) =
B0x

2

0!2!
+
B1x

1!1!
+
B2

2!0!

B3(x) =
B0x

3

0!3!
+
B1x

2

1!2!
+
B2x

2!1!
+
B3

3!0!
etc.

Exercise 1.3.2. Show that , when n ≥ 2, Bn = n!Bn(0)

Exercise 1.3.3. Show that on (0, 1),
0!B0(x) = B0

* Except when n = 1 or 2 and x is an integer.
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1!B1(x) = B0x+B1

2!B2(x) = B0x
2 + 2B1x+B2

3!B3(x) = B0x
3 + 3B1x

2 + 3B2x+B3

etc.

Some authors define the Bernoulli polynomials (on (−∞,∞)) to be the right hand sides of the above equa-
tions. If, in the future, you encounter Bernoulli functions or polynomials, be sure to check what is intended
by a particular author.

Exercise 1.3.4. Show that for n ≥ 2, Bn(1) = Bn(0).

Exercise 1.3.5. Compute Bn for n = 0, 1, 2, 3, . . . , 12.

Exercise 1.3.6. Show that B1(x) = x − bxc − 1/2 for −∞ < x < ∞ and x not an integer. [Note: bxc is
the greatest integer less than or equal to x.]

Since B1(x) = x − 1
2 on (0, 1) and is an odd function on (−1, 1) (do you see why?) we can expand it in

Fourier series using (ON1) with L = 1. The Fourier coefficients are

ak =
√

2
∫ 1

0

(x− 1
2

) sin(kπx) dx = −
√

2
kπ

(
1 + (−1)k

2

)
.

Thus, ak = 0 if k is odd, and ak = −
√

2
kπ if k is even. This gives

B1(x) = −2
∞∑
k=1

sin(2kπx)
2kπ

= − 2
2π

∞∑
k=1

sin(2kπx)
k

.

Integrate term by term and use the fact that B′2(x) = B1(x) to get

B2(x) =
2

(2π)2

∞∑
k=1

cos(2kπx)
k2

.

Similarly,

B2n+1(x) = (−1)n+1 2
(2π)2n+1

∞∑
k=1

sin(2kπx)
k2n+1

,

and

B2n(x) = (−1)n+1 2
(2π)2n

∞∑
k=1

cos(2kπx)
k2n

.

Exercise 1.3.7. The work above with the Fourier series was done formally, without worrying about whether
the results were meaningful. Prove that the formulas for B2(x), B2n+1(x), and B2n(x) are correct by showing
that the series converge and satisfy the properties of the Bernoulli functions.

Exercise 1.3.8. Use Mathematica or Maple to plot graphs of B1(x), B2(x), and B3(x) on 0 ≤ x ≤ 4. Also
graph the Fourier approximations of B1(x), B2(x), and B3(x) using n = 2, n = 5, and n = 50.

Example 1.3.1 (Some Values of the Riemann Zeta Function). Since Bn(0) = Bn/n!, we have
B2(0) = 1/12. Therefore,

1
12

=
2

(2π)2

(
1
12

+
1
22

+
1
32

+ . . .

)
5



and so we get

ζ(2) =
∞∑
k=1

1
k2

=
(2π)2

(12)(2)
=
π2

6
.

Exercise 1.3.9. Find ζ(4), ζ(6), and ζ(8).

Van der Pol used to say that those who know these formulas are mathematicians and those who do not are
not.

1.4. The Euler-Maclaurin Formulas

Let p and q be integers and assume f is differentiable (as many times as needed) for p ≤ x ≤ q. Let k be an
integer, p ≤ k < q. Then∫ k+1

k

f(x) dx =
∫ k+1

k

f(x)B0(x) dx = lim
ε→0

∫ k+1−ε

k+ε

f(x)B′1(x) dx.

Integration by parts gives

∫ k+1

k

f(x) dx = lim
ε→0

[
f(x)B1(x)

]k+1−ε

k+ε
−
∫ k+1−ε

k+ε

f ′(x)B1(x) dx

]
=
f(k) + f(k + 1)

2
−
∫ k+1

k

f ′(x)B1(x) dx.

Adding between p and q, we get

∫ q

p

f(x) dx =
q−1∑
k=p

∫ k+1

k

f(x) dx =
q∑

k=p

f(k)− f(p) + f(q)
2

−
∫ q

p

f ′(x)B1(x) dx.

A slight rearrangement produces the first Euler-Maclaurin Formula:

q∑
k=p

f(k) =
∫ q

p

f(x) dx+
f(p) + f(q)

2
+
∫ q

p

f ′(x)B1(x) dx. (EM1)

This is a useful formula for estimating sums.

Additional Euler-Maclaurin formulas can be obtained by further integration by parts.

Exercise 1.4.1. Derive the following: (Remember that Bj = 0 if j ≥ 3 and odd.)

q∑
k=p

f(k) =
∫ q

p

f(x) dx +
f(p) + f(q)

2
+
f ′(q)− f ′(p)

12
−
∫ q

p

f ′′(x)B2(x) dx. (EM2)

q∑
k=p

f(k) =
∫ q

p

f(x) dx+
f(p) + f(q)

2
+
f ′(q)− f ′(p)

12
+
∫ q

p

f ′′′(x)B3(x) dx. (EM3)

q∑
k=p

f(k) =
∫ q

p

f(x) dx +
f(p) + f(q)

2
+

m∑
j=2

(
f (j−1)(q)− f (j−1)(p)

) Bj
j!

+ (−1)m+1

∫ q

p

f (m)(x)Bm(x) dx.

(EMm)

6



Example 1.4.1. In (EM3), let f(x) = x2, p = 0, and q = n. Since fm(x) = 0 for m ≥ 3 we get
n∑
k=0

k2 =
∫ n

0

x2 dx+
0 + n2

2
+

2n− 0
12

=
n3

3
+
n2

2
+
n

6

=
n(n+ 1)(2n+ 1)

6
.

This is much neater than mathematical induction.

Example 1.4.2. In (EMm), let p = 0, q = n, m = s, and f(x) = xs, where s is a positive integer other
than 1. Then

n∑
k=1

ks =
ns+1

s+ 1
+
ns

2
+

s∑
j=2

f (j−1)(n)Bj
j!

+ (−1)s+1

∫ n

0

s!Bs(x) dx

=
ns+1

s+ 1
+
ns

2
+

s∑
j=2

s(s− 1) . . . (s− j + 2)ns−j+1Bj
j!

= ns +
1

s+ 1

s∑
j=0

(
s+ 1
j

)
ns+1−jBj

Exercise 1.4.2. Fill in the details in the last example and get formulas for
∑n
k=1 k

3 and
∑n

k=1 k
4.

In some cases, as x → ∞, f (m)(x) → 0 for m large enough. When the integral in the following expression
converges, we can define a constant Cp by

Cp =
f(p)

2
−

m∑
j=2

f (j−1)(p)Bj
j!

+ (−1)m+1

∫ ∞
p

f (m)(x)Bm(x) dx.

Exercise 1.4.3. Show that Cp is independent of m by showing that the right side is unchanged when m is
replaced by m+ 1. Integration by parts helps.

Subtract the Cp equation from (EMm) to get
q∑

k=p

f(k) = Cp +
∫ q

p

f(x) dx+
f(q)

2
+

m∑
j=2

f (j−1)(q)Bj
j!

+ (−1)m
∫ ∞
q

f (m)(x)Bm(x) dx.

We solve for Cp to get

Cp =
q∑

k=p

f(k)−
∫ q

p

f(x) dx− f(q)
2
−

m∑
j=2

f (j−1)(q)Bj
j!

− (−1)m
∫ ∞
q

f (m)(x)Bm(x) dx.

Example 1.4.3 (Euler’s Constant). Let f(x) = 1/x, p = 1, q = n, and (at first) m = 3. Then the
penultimate formula involving Cp, now C1, gives

n∑
k=1

1
k

= C1 +
∫ n

1

1
x
dx+

1
2n

+
3∑
j=2

f (j−1)(n)Bj
j!

+ (−1)3

∫ ∞
n

f (3)(x)B3(x) dx

= logn+ C1 +
1

2n
− B2

n22!
−
∫ ∞
n

−6x−4B3(x) dx

= logn+ γ +
1

2n
− 1

12n2
+ 6

∫ ∞
n

B3(x)
x4

dx.
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Exercise 1.4.4. Fill in the details to this point in the example, especially why γ can replace C1. Then,
assuming γ is known, obtain bounds on the last integral and approximate

∑n
k=1

1
k for n = 10, 50, and 100.

How close are your estimates?

(Continuation of Example 1.4.3). If now q = 10, and m is arbitrary, the last formula for C1 (= γ) gives

γ =
10∑
k=1

1
k
− log 10− 1

20
−

m∑
j=2

(−1)j−1(j − 1)!Bj
10jj!

− (−1)m
∫ ∞

10

(−1)mm!Bm(x)
xm+1

dx

=
10∑
k=1

1
k
− log 10− 1

20
+

m∑
j=2

Bj
10jj

−
∫ ∞

10

m!Bm(x)
xm+1

dx.

Exercise 1.4.5. Prove that if m = 10 in the last formula for γ, then the integral is less than 10−12, and
so the other terms can be used to compute γ correct to at least ten decimal places. Do this computation.
To best appreciate the formula, do the computation by hand, assuming that you know log 10 to a sufficient
number of places (you have already found exact values for the Bernoulli numbers you need). (log 10 =
2.3025 85092 994 . . .)

1.5 The Stirling Formulas

This section is a (long) derivation of the Stirling formulas for log (z!) and z!. As you work through the
section, think about how the steps fit together.

Exercise 1.5.1. Let p = 1, q = n, m ≥ 2, and f(x) = log (z + x) for z > −1. Use (EMm) to get

n∑
k=1

log (z + k) = (z + n+
1
2

) log (z + n)− (z +
1
2

) log (z + 1)− n+ 1

+
m∑
j=2

Bj
j(j − 1)

(
1

(z + n)j−1
− 1

(z + 1)j−1

)
(1.5.1)

+
∫ n

1

(m− 1)!Bm(x)
(z + x)m

dx.

Put z = 0 in (1.5.1) to get

log (n!) = (n+
1
2

) logn− n+ 1 +
m∑
j=2

Bj
j(j − 1)

(
1

nj−1
− 1
)

+
∫ n

1

(m− 1)!Bm(x)
xm

dx. (1.5.2)

In the next chapter we will see how Wallis’ formulas, (see also A&S, 6.1.49)∫ π/2

0

sin2n xdx =
(2n)!

22n(n!)2

π

2
,∫ π/2

0

sin2n+1 xdx =
22n(n!)2

(2n)!
1

2n+ 1
,

can be used to prove that

lim
n→∞

(2n)!
√
nπ

22n(n!)2
= 1. (1.5.3)
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Accept this result for now - you will have a chance to prove it later! From (1.5.3) we get

lim
n→∞

[
log ((2n)!) + log

√
nπ − 2n log 2− 2 log (n!)

]
= 0. (1.5.4)

Substitute for log ((2n)!) and log (n!) in (1.5.4) using (1.5.2) and simplify to get

lim
n→∞

[
1
2

log 2− 1 +
1
2

log π

+
m∑
j=2

Bj
j(j − 1)

(
1

(2n)j−1
− 2
nj−1

+ 1
)

+
∫ 2n

1

(m− 1)!Bm(x)
xm

dx− 2
∫ n

1

(m− 1)!Bm(x)
xm

dx

]
= 0.

More simplification yields

log
√

2π − 1 +
m∑
j=2

Bj
j(j − 1)

−
∫ ∞

1

(m− 1)!Bm(x)
xm

dx = 0 (1.5.5)

Exercise 1.5.2. Show that∫ n

1

(m− 1)!Bm(x)
xm

dx−
∫ ∞

1

(m− 1)!Bm(x)
xm

dx = −
∫ ∞

0

(m− 1)!Bm(x)
(n+ x)m

dx (1.5.6)

Add (1.5.5) to (1.5.2), and use (1.5.6) to get

log (n!) = log
√

2π + (n+
1
2

) logn− n+
m∑
j=2

Bj
j(j − 1)nj−1

−
∫ ∞

0

(m− 1)!Bm(x)
(n+ x)m

dx. (1.5.7)

Clearly, for integers z > 0,

z! = lim
n→∞

1 · 2 · 3 · . . . · z

= lim
n→∞

1 · 2 · 3 · . . . · z(z + 1)(. . . (z + n)
(z + 1) . . . (z + n)

= lim
n→∞

[(
n!nz

(z + 1) . . . (z + n)

)(
n+ 1
n

)(
n+ 2
n

)
. . .

(
n+ z)
n

)]
.

Since each of the last factors has limit one, we have (see A&S, 6.1.2), for z > −1,

z! = lim
n→∞

n!nz

(z + 1)(z + 2) . . . (z + n)
. (1.5.8)

Taking logs,

log (z!) = lim
n→∞

[
log (n!) + z logn−

n∑
k=1

log (z + k)

]
. (1.5.9)

Substitute from (1.5.7) and (1.5.1) to get

log (z!) = log
√

2π + (z +
1
2

) log (z + 1)− (z + 1)

+
m∑
j=2

Bj
j(j − 1)(z + 1)j−1

−
∫ ∞

1

(m− 1)!Bm(x)
(z + x)m

dx. (1.5.10)
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Exercise 1.5.3. Show that

lim
n→∞

[(
z + n+

1
2

)
(log (z + n)− logn)

]
= z (1.5.11)

and use this fact to get (1.5.10).

If z > 0, add log (z + 1) to both sides of (1.5.10)

log ((z + 1)!) = log
√

2π + (z +
3
2

) log (z + 1)− (z + 1)

+
m∑
j=2

Bj
j(j − 1)(z + 1)j−1

−
∫ ∞

1

(m− 1)!Bm(x)
(z + x)m

dx.

Finally, replace z + 1 by z:

log (z!) = log
√

2π + (z +
1
2

) log z − z

+
m∑
j=2

Bj
j(j − 1)zj−1

−
∫ ∞

0

(m− 1)!Bm(x)
(z + x)m

dx. (1.5.12)

Note that for z = n, (1.5.12) is identical to (1.5.7).

For z ∈ C − {z | <(z) ≤ 0}, everything on the right side of (1.5.12) is analytic. Analytic continuation then
makes (1.5.12) valid for all complex z not on the non-positive real axis. To make the notation more compact,
let

E(z) =
m∑
j=2

Bj
j(j − 1)zj−1

−
∫ ∞

0

(m− 1)!Bm(x)
(z + x)m

dx, (1.5.13)

so that (1.5.12) becomes

log (z!) = log
√

2π + (z +
1
2

) log z − z + E(z), (1.5.14)

or, equivalently,
z! =

√
2πz zze−zeE(z). (1.5.15)

Equations (1.5.14) and (1.5.15) are the Stirling formulas for log (z!) and z!. Equation (1.5.15) can be thought
of as defining z! when z is not a positive integer. See A&S, 6.1.37 and 6.1.38. The term E(z) is small and
can be bounded by simple functions, so the Stirling formulas can be used to estimate z! and log (z!) quite
accurately.

Exercise 1.5.4. For z real and positive, show that

0 < E(z) <
1

12z
,

and
1

12z
− 1

360z3
< E(z) <

1
12z
− 1

360z3
+

1
1260z5

.

Exercise 1.5.5. Use the Stirling formulas to estimate 5! and log (5!) within 3 decimal places, then do the
same for 5.5! and log (5.5!). Think about how you could find these values without a fancy calculator or
computer.
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Chapter 2. The Gamma Function

2.1. Definition and Basic Properties

Although we will be most interested in real arguments for the gamma function, the definition is valid for
complex arguments. See Chapter 6 in A&S for more about the gamma function.

Definition 2.1.1. For z a complex number with <(z) > 0, Γ(z) =
∫ ∞

0

e−ttz−1 dt.

Theorem 2.1.1 (Difference Equation). Γ(z + 1) = z Γ(z).

Proof. For the proof we apply integration by parts to the integral in the definition of Γ(z).

Γ(z) =
∫ ∞

0

e−ttz−1 dt =
tze−t

z

]∞
0

+
∫ ∞

0

tze−t

z
dt.

Thus, z Γ(z) =
∫∞

0 e−ttz dt = Γ(z + 1). ♠

Theorem 2.1.2 (Factorial Equivalence). Γ(n+ 1) = n! for n = 0, 1, 2, . . ..

Proof. By direct calculation in the definition, Γ(1) = 1. Repeated use of Theorem 2.1.1 gives Γ(n + 1) =
n! Γ(1) = n!. ♠

Theorem 2.1.3. If x is real and positive, then lim
x→0+

Γ(x) = +∞.

Proof.

Γ(x) >
∫ 1

0

e−ttx−1 dt >
1
e

∫ 1

0

tx−1 dt.

The last integral is an improper integral, so∫ 1

0

tx−1 dt = lim
ε→0+

∫ 1

ε

tx−1 dt = lim
ε→0+

[
1
x
− εx

x

]
=

1
x
.

So, Γ(x) >
1
e x

for x > 0, and thus Γ(x)→∞ as x→ 0. ♠

The gamma function is often referred to as the “continuous version of the factorial”, or words to that effect.
If we are going to say this, we need to prove that Γ(x) is continuous. The next theorem uses the Weierstrass
M-test for improper integrals, something you should be familiar with for series. The result works similarly
for integrals. (Find your advanced calculus book and review the Weierstrass M-test if necessary.)

Theorem 2.1.4 (Continuity of Γ). The gamma function is continuous for all real positive x.

Proof. Assume x0 > 0 and choose a and b such that 0 < a < x0 < b. Then the integral
∫∞

1 e−ttx−1 dt

converges uniformly on [a, b] by the Weierstrass M-test because
∣∣e−ttx−1

∣∣ < e−ttb−1 and
∫∞

1 e−ttb−1 dt
converges.

The integral
∫ 1

0
e−ttx−1 dt is proper for x ∈ [a, b] if a ≥ 1. If 0 < a < 1, then this integral also converges

uniformly by the Weierstrass M-test since
∣∣e−ttx−1

∣∣ < ta−1 and
∫ 1

0
ta−1 dt converges.
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Combining these results, we see that the integral defining Γ(x) converges uniformly on [a, b], and the integrand
is continuous in x and t. By an advanced calculus theorem, this makes Γ continuous on [a, b] and thus
continuous at x0. ♠

Exercise 2.1.1. Show that, for x real and positive, lim
x→0+

xΓ(x) = 1.

The domain of Γ(x) can be extended to include values between consecutive negative integers. For n =
1, 2, 3, . . ., and −n < x < −n+ 1, define Γ(x) by

Γ(x) =
Γ(x+ n)

x(x+ 1)(x+ 2) · · · (x+ n− 1)
.

In this way, Γ(x) is defined for all x 6= 0,−1,−2, . . ..

Exercise 2.1.2. Show that Γ(x+ 1) = xΓ(x) for all x 6= 0,−1,−2, . . ..

We know that Γ(x) becomes infinite as x→ 0+ and as x→∞, but what happens in between? Differentiating,
we get, for 0 < x <∞,

Γ′(x) =
d

dx

∫ ∞
0

e−ttx−1 dt =
∫ ∞

0

e−ttx−1 log t dt,

Γ′′(x) =
∫ ∞

0

e−ttx−1(log t)2 dt.

Since the integrand in Γ′′(x) is positive for 0 < x < ∞, so is Γ′′(x). Thus, the graph of Γ(x) is concave up
on (0,∞).

The technique used in the proof of the following theorem is one everyone should know.

Theorem 2.1.5.
∫ ∞

0

e−x
2
dx =

√
π

2
.

Proof. Consider the following regions in the first quadrant of the plane, shown in Figure 2.

S = {(x, y) | 0 ≤ x ≤ R , 0 ≤ y ≤ R}

D1 = {(x, y) |x ≥ 0, y ≥ 0, x2 + y2 ≤ R2}
D2 = {(x, y) |x ≥ 0, y ≥ 0, x2 + y2 ≤ 2R2}

Clearly, ∫∫
D1

e−x
2−y2

dA <

∫∫
S

e−x
2−y2

dA <

∫∫
D2

e−x
2−y2

dA.

Use polar coordinates on the outside integrals and rectangular coordinates on the middle one to get∫ π/2

0

∫ R

0

r e−r
2
dr dθ <

∫ R

0

∫ R

0

e−x
2
e−y

2
dx dy <

∫ π/2

0

∫ √2R

0

r e−r
2
dr dθ,∫ π/2

0

1− e−R2

2
dθ <

(∫ R

0

e−x
2
dx

)(∫ R

0

e−y
2
dy

)
<

∫ π/2

0

1− e−2R2

2
dθ,

π

4
(1− e−R2

) <

(∫ R

0

e−x
2
dx

)2

<
π

4
(1− e−2R2

).
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R R
√

2

R

R
√

2

Figure 2.1.1

Taking limits as R→∞ yields (∫ ∞
0

e−x
2
dx

)2

=
π

4
,

and so
∫ ∞

0

e−x
2
dx =

√
π

2
. ♠

Corollary 2.1.5. Γ(1
2 ) =

√
π.

Proof. Γ(1
2 ) =

∫∞
0 e−tt−1/2dt. Let t = y2 to get

Γ(
1
2

) =
∫ ∞

0

e−y
2
y−12y dy = 2

∫ ∞
0

e−y
2
dy =

√
π. ♠

Exercise 2.1.3. Prove Γ(n+
1
2

) =
(2n)!

√
π

22nn!
.

Exercise 2.1.4. For 0 < x <∞, prove Γ(x) = 2
∫ ∞

0

e−t
2
t2x−1dt.

Exercise 2.1.5. Show that f(x) =
∫ ∞

0

e−t
2

cos (xt) dt =
√
π

2
e−x

2/4. [Hint: Find and solve a differential

equation satisfied by f .]

Exercise 2.1.6. Find all positive numbers T such that
∫ T

0 x− log x dx =
∫∞
T x− log x dx, and evaluate the

integrals.

2.2. The Beta Function, Wallis’ Product

Another special function defined by an improper integral and related to the gamma function is the beta
function, denoted B(x, y).
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Definition 2.2.1. B(x, y) =
∫ 1

0 t
x−1(1− t)y−1dt, for x > 0, y > 0.

If both x > 1 and y > 1, then the beta function is given by a proper integral and convergence is not a
question. However, if 0 < x < 1 or 0 < y < 1, then the integral is improper. Convince yourself that in these
cases the integral converges, making the beta function well-defined. We now develop some of the properties
of B(x, y). Unless otherwise stated, we assume x and y are in the first quadrant.

Theorem 2.2.1 (Symmetry). B(x, y) = B(y, x).

Proof. In the definition, make the change of variable u = 1− t. ♠

Theorem 2.2.2. B(x, y) = 2
∫ π/2

0

(sin t)2x−1(cos t)2y−1dt.

Proof. Make the change of variable t = sin2 u. ♠

Theorem 2.2.3. B(x, y) =
∫ ∞

0

tx−1

(1 + t)x+y
dt.

Proof. Let t = u
1+u . ♠

Exercise 2.2.1. Fill in the details in the proofs of Theorems 2.2.1 - 2.2.3.

Theorem 2.2.4 (Relation to the Gamma Function). B(x, y) =
Γ(x) Γ(y)
Γ(x+ y)

.

Proof. The proof uses the method employed in the proof of Theorem 2.1.5. (When a trick is used twice

it becomes a method!) From Exercise 2.1.4, we know Γ(x) = 2
∫ ∞

0

e−t
2
t2x−1dt, so consider the function

given by G(t, u) = t2x−1u2y−1e−t
2−u2

. Integrate G (with respect to t and u) over the three regions shown
in Figure 2, using polar coordinates in the quarter-circles as before. The inequalities become∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ

∫ R

0

r2x+2y−1e−r
2
dr

<

∫ R

0

t2x−1e−t
2
dt

∫ R

0

u2y−1e−u
2
du

<

∫ π/2

0

(cos θ)2x−1(sin θ)2y−1 dθ

∫ √2R

0

r2x+2y−1e−r
2
dr.

As R→∞, we see from Exercise 2.1.4 and Theorem 2.2.2 that the center term approaches Γ(x) Γ(y)/4, and

the outside terms approach B(x, y) Γ(x + y)/4. Thus, B(x, y) =
Γ(x) Γ(y)
Γ(x+ y)

. ♠

Exercise 2.2.2 (Dirichlet Integrals 1). Show that∫∫∫
V

xα−1yβ−1zγ−1dV =
Γ(α2 ) Γ(β2 ) Γ(γ2 )

8 Γ(α+β+γ
2 + 1)

,
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where V is the region in the first octant bounded by the coordinate planes and the sphere x2 + y2 + z2 = 1.
[Let x2 = u, y2 = v, and z2 = w to transform the region of integration into a tetrahedron. After another
substitution later, recognize the beta function integral so you can use Theorem 2.2.4.]

Exercise 2.2.3 (Dirichlet Integrals 2). Show that∫∫∫
V

xα−1yβ−1zγ−1dV =
aαbβcγ

pqr

Γ(αp ) Γ(βq ) Γ(γr )

Γ(1 + α
p + β

q + γ
r )
,

where V is the region in the first octant bounded by the coordinate planes and
(
x
a

)p +
(
y
b

)q +
(
z
c

)r = 1.

Exercise 2.2.4. Prove Wallis’ Formulas:∫ π/2

0

sin2n xdx =
(2n)!

22n(n!)2

π

2
=
√
π Γ(n+ 1

2 )
2(n!)

,∫ π/2

0

sin2n+1 xdx =
22n(n!)2

(2n)!
1

2n+ 1
=

√
π n!

2 Γ(n+ 3
2 )
.

[Use Exercise 2.1.3, Theorem 2.2.2, and Theorem 2.2.4.]

An interesting fact about Wallis’ formulas is that (2n)!
22n(n!)2 is the probability of getting exactly n heads when

2n coins are tossed.

Exercise 2.2.5. An excellent aproximation to the probability of getting exactly n heads when 2n coins are
tossed is given by 1√

nπ
. Use Mathematica or Maple to convince yourself that this is true. (The proof will

come later.)

Theorem 2.2.5 (Wallis’ Product).
π

2
=

2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · 2k

2k − 1
· 2k

2k + 1
· · ·.

Proof. Let Pn be the partial product of the first n factors on the right side. We must show that lim
n→∞

Pn =
π

2
.

From Exercise 2.2.4, ∫ π/2
0 sin2n xdx∫ π/2

0 sin2n+1 xdx
=

Γ(n+ 1
2 )

n!
·

Γ(n+ 3
2 )

n!
.

By Theorem 2.1.1 and some algebra,

Γ(n+ 1
2 )

n!
=

2n− 1
2n

· 2n− 3
2(n− 1)

· · · 3
2 · 2 ·

1
2 · 1
√
π,

Γ(n+ 3
2 )

n!
=

2n+ 1
2n

· 2n− 1
2(n− 1)

· · · 3
2 · 1 ·

1
2
√
π.

So the quotient above is ∫ π/2
0

sin2n xdx∫ π/2
0

sin2n+1 xdx
=

1
P2n
· π

2
.

Again using Exercise 2.2.4, we have ∫ π/2
0 sin2n+1 xdx∫ π/2
0 sin2n−1 xdx

=
2n

2n+ 1
,
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or ∫ π/2

0

sin2n−1 xdx =
2n+ 1

2n

∫ π/2

0

sin2n+1 xdx.

Since sinx is increasing and 0 ≤ sinx ≤ 1 on [0, π/2],

0 <
∫ π/2

0

sin2n+1 xdx <

∫ π/2

0

sin2n xdx <

∫ π/2

0

sin2n−1 xdx.

Divide by
∫ π/2

0
sin2n+1 xdx to get

1 <

∫ π/2
0

sin2n xdx∫ π/2
0

sin2n+1 xdx
<

2n+ 1
2n

.

Clearly, as n→∞, the middle term → 1, giving us

lim
n→∞

1
P2n
· π

2
= 1 and so lim

n→∞
P2n =

π

2
.

Since lim
n→∞

P2n+1 = lim
n→∞

2n+ 2
2n+ 1

P2n =
π

2
, the proof is complete. ♠

Corollary 2.2.5. lim
n→∞

(2n)!
√
nπ

22n(n!)2
= 1.

Exercise 2.2.6 (Progress as Promised). Prove Corollary 2.2.5.

Exercise 2.2.7. Prove that the approximation in Exercise 2.2.5 is correct by showing that

(2n)!
22n(n!)2

=

√
1− 1− θn

2n+ 1
· 1√

nπ

for some θn satisfying 0 < θn < 1. [The θn comes from using the Mean Value Theorem on one of the
inequalities in the proof of Theorem 2.2.5.]

2.3. The Reflection Formula

First, a Fourier series warm-up.

Exercise 2.3.1. Expand f(x) = |x| for −π ≤ x ≤ π, and f(x+ 2π) = f(x) in Fourier series. Use this result
to show that

π2

8
=
∞∑
k=1

1
(2k − 1)2

and
π2

24
=
∞∑
k=1

1
(2k)2

.

Now that you have Fourier series back at the top level in your mind, the next exercise will be needed soon.

Exercise 2.3.2. Expand f(x) = cos (zx) for −π ≤ x ≤ π, and f(x + 2π) = f(x) in Fourier series (treat z
as a constant) to get

cos (zx) =
2z
π

sin (π z)

[
1

2z2
+
∞∑
k=1

(−1)k cos (kx)
z2 − k2

]
.

The following theorem is stated in terms of complex z, but no arguments in the proof require complex
analysis, so feel free to think of the z as a real number.
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Theorem 2.3.1 (The Reflection Formula). Γ(z)Γ(1− z) = π csc (π z) for 0 < <(z) < 1.

Proof. Let x = 0 in the series of Exercise 2.3.2 to get

π csc (π z) = 2z
[

1
2z2
− 1
z2 − 12

+
1

z2 − 22
− · · ·

]
.

For 0 < <(z) < 1, Theorems 2.2.3 and 2.2.4 give

Γ(z)Γ(1− z) = B(z, 1− z) =
∫ ∞

0

xz−1

1 + x
dx

=
∫ 1

0

xz−1

1 + x
dx+

∫ ∞
1

xz−1

1 + x
dx

=
∫ 1

0

xz−1

1 + x
dx+

∫ 0

1

−t−z
1 + t

dt

=
∫ 1

0

xz−1

1 + x
dx+

∫ 1

0

x−z

1 + x
dx

=
∫ 1

0

xz−1dx+
∫ 1

0

x−z − xz
1 + x

dx

=
1
z

+
∫ 1

0

(x−z − xz)(1− x+ x2 − x3 + · · ·) dx

=
1
z

+
∫ 1

0

∞∑
k=0

(x−z+k − xz+k) dx

=
1
z
−
(

1
1 + z

− 1
1− z

)
+
(

1
2 + z

− 1
2− z

)
− · · ·

= 2z
[

1
2z2
− 1
z2 − 12

+
1

z2 − 22
− · · ·

]
.

The proof is complete provided we can justify the term-by-term integration. Denote by Sn(x) and Rn(x) the

nth partial sum and remainder of the series
∞∑
k=0

(−1)kxk(x−z − xz). We need to show that
∫ 1

0 Rn(x) dx →

0 as n→∞. ∫ 1

0

|Rn(x)| dx =
∫ 1

0

xn+1(x−z − xz)
1 + x

dx =
∫ 1

0

xn
[
x1−z − x1+z

1 + x

]
dx.

Since 0 < z < 1, the function x1−z−x1+z

1+x is continuous in x on [0, 1], and so there is a number M , such that
x1−z − x1+z

1 + x
≤M for all z ∈ (0, 1). Thus,

∫ 1

0

|Rn(x)| dx ≤
∫ 1

0

Mxn dx =
M

n+ 1
.

This completes the proof. ♠

Example 2.3.1 (Another Route to Wallis’ Product). Let x = π in the series of Exercise 2.3.2 to get

cos (π z) =
2z sin (π z)

π

[
1

2z2
+

1
z2 − 12

+
1

z2 − 22
+

1
z2 − 32

+ · · ·
]
,
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π cot (π z)− 1
z

=
∞∑
k=1

2z
z2 − k2

.

Integrate both sides with respect to z from 0 to x, −1 < x < 1. (This time term-by-term integration is valid
because the series converges uniformly for |z| < 1.)

∫ x

0

(
π cos (π z)
sin (π z)

− 1
z

)
dz =

∞∑
k=1

log |z2 − k2|
]x

0

log (sin (π x))− log x− lim
z→0

[log (sin (π z))− log z] =
∞∑
k=1

log
(
k2 − x2

k2

)

log
(

sin (π x)
π x

)
=
∞∑
k=1

log
(

1− x2

k2

)
.

This is equivalent to

sin (π x) = π x

∞∏
k=1

(
1− x2

k2

)
for − 1 < x < 1.

Let x = 1
2 and factor the term in the product to get

1 =
π

2

[(
1
2
· 3

2

)(
3
4
· 5

4

)(
5
6
· 7

6

)
· · ·
]

or

π

2
=

2
1
· 2

3
· 4

3
· 4

5
· 6

5
· 6

7
· · · 2k

2k − 1
· 2k

2k + 1
· · ·

In most of the following exercises use Mathematica or Maple to do graphs and numerical work. Proofs are,
of course, still your responsibility. If you use Mathematica or Maple to do an integral whose value is given
in terms of a special function, think of the result as a theorem to prove.

Exercise 2.3.3. Evaluate

∫ ∞
0

e−st
√
t dt, which gives the Laplace transform of

√
t.

Exercise 2.3.4. Evaluate

∫ 1

0

(
log (

1
t
)
)x−1

dt and

∫ 1

0

(log t)x−1
dt. When is the second one real-valued?

Exercise 2.3.5. Plot the graph of y = 1/Γ(x) for −4 ≤ x ≤ 10. Using the computer, find the first 8 terms
in the Taylor series expansion of 1/Γ(x) around x = 0. Do the first 8 terms give a good approximation of the
value of Γ(5)? How about Γ(2)? Compare with the values from Stirling’s formula, and revise, if necessary,
your opinion of old Stirling.

Exercise 2.3.6. Show that B(x, x) = 21−2xB(x, 1
2 ) for 0 < x < ∞. Plot the graph of y = B(x, x) and

y = 21−2xB(x, 1
2 ) on (0, 10].

Exercise 2.3.7. Show that
√
π Γ(2x) = 22x−1Γ(x) Γ(x + 1

2 ), for 0 < x <∞. [Exercise 2.3.6 should help.]

Exercise 2.3.8. Evaluate f(t) =
∫ π/2

0

(sin (2x))2t−1dx, and plot the graph of f on (0, 10].
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Exercise 2.3.9. Plot the graph of x2/3 + y2/3 = 1, and find the area inside the curve. [Parameterize the
curve in terms of trig functions.]

2.4. Stirling and Weierstrass

It is a good idea to have a feeling for the order of magnitude of n! and Γ(x), especially in comparison with
other things that “get real big real fast”. The following theorem, due to Stirling, addresses this topic.

Theorem 2.4.1 (Stirling). lim
n→∞

(
n
e

)n√2π n
n!

= 1.

Proof. Let an =
n!(

n
e

)n√
n
. We will show that an →

√
2π as n→∞. In Corollary 2.2.5, we can write

(n!)222n

(2n)!
√
n

=
a2
n√

2a2n

=
(n!)2

(
2n
e

)2n√2n
√

2
(
n
e

)2n
n(2n)!

.

Assuming lim
n→∞

an = r 6= 0, Corollary 2.2.5 gives

√
π =

r2

r
√

2
or r =

√
2π.

The proof will be complete when we (you!) show that the sequence {an} has a nonzero limit. This is done
in an exercise. ♠

Exercise 2.4.1. Show log
(

1 +
1
n

)
>

2
2n+ 1

for

n = 1, 2, 3, , . . .. [Hint: See figure.]

n n+1/2 n+1

y=1/x

Exercise 2.4.2. For the sequence {an} in Theorem 2.4.1 prove that {an} is a bounded monotonic sequence,
and thus has a limit. Further, show that this limit is ≥ 1. [Hint: See figure below.]

1 3/2 2 5/2 n-3/2 n-1 n-1/2 n

2

y = log x

We now prepare for Weierstrass’ infinite product representation of the gamma function, which involves
Euler’s constant, γ.
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Lemma 2.4.1. For 0 ≤ x ≤ 1, lim
n→∞

Γ(x+ n)
Γ(n) nx

= 1.

Proof. Since x ≥ 0 and x− 1 ≤ 0, if 0 ≤ t ≤ n, we get tx ≤ nx and nx−1 ≤ tx−1 so that

nx−1

∫ n

0

e−ttndt ≤
∫ n

0

e−ttn+x−1dt ≤ nx
∫ n

0

e−ttn−1dt. (2.4.1)

Similarly, if n ≤ t ≤ ∞, we have nx ≤ tx and tx−1 ≤ nx−1 so that

nx
∫ ∞
n

e−ttn−1dt ≤
∫ ∞
n

e−ttn+x−1dt ≤ nx−1

∫ ∞
n

e−ttndt. (2.4.2)

In (2.4.2) integrate the outside integrals by parts to get

−e−nnn+x−1 + nx−1

∫ ∞
n

e−ttndt ≤
∫ ∞
n

e−ttn+x−1dt ≤ e−nnn+x−1 + nx
∫ ∞
n

e−ttn−1dt. (2.4.3)

Add (2.4.1) and (2.4.3) and note the appearance of gamma functions to get
−e−nnn+x−1 + nx−1Γ(n+ 1) ≤ Γ(x+ n) ≤ e−nnn+x−1 + nxΓ(n).

Divide by nxΓ(n) and simplify to get

−e
−nnn

n!
+ 1 ≤ Γ(x+ n)

Γ(n) nx
≤ e−nnn

n!
+ 1.

By Theorem 2.4.1 (Stirling) lim
n→∞

e−nnn

n!
= 0, which completes the proof. ♠

Lemma 2.4.2. For 0 ≤ x ≤ ∞, lim
n→∞

Γ(x+ n)
Γ(n) nx

= 1.

Sketch of Proof. Use induction and the fact that
Γ(x+ n)
Γ(n) nx

=
x− 1 + n

n
· Γ(x− 1 + n)

Γ(n) nx−1
. ♠

The following result of Weierstrass can be, and sometimes is, used to define the gamma function instead of
the integral in Definition 2.1.1. See, for example, A Course of Modern Analysis by Whittaker and Watson.

Theorem 2.4.2 (Weierstrass). If x > 0 and γ denotes Euler’s constant, then

1
Γ(x)

= x eγx
∞∏
k=1

(
1 +

x

k

)
e−x/k.

Proof. Let

Pn = x

n−1∏
k=1

(
1 +

x

k

)
e−x/k =

(
x

n−1∏
k=1

(x+ k)

)(
n−1∏
k=1

1
k

)(
n−1∏
k=1

e−x/k

)
=

(
n−1∏
k=0

(x+ k)

)
1

Γ(n)
e−xHn−1 ,

where Hn−1 = 1 + 1
2 + · · ·+ 1

n−1 . By Theorem 2.1.1,

1
Γ(x)

=
∏n−1
k=0 (x+ k)
Γ(x+ n)

=
PnΓ(n)exHn−1

Γ(x+ n)
· n

x

nx

=
Γ(n) nx

Γ(x+ n)
Pne

xHn−1e−x logn =
Γ(n) nx

Γ(x+ n)
Pne

(Hn−1−logn)x.

By the definition of γ and Lemmas 2.4.1 and 2.4.2, we get lim
n→∞

Pn =
e−γx

Γ(x)
. ♠

Weierstrass’ theorem connects the gamma function and Euler’s constant. This connection can be further
exploited.
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Theorem 2.4.3. Γ′(1) = −γ.

Proof. The logarithmic derivative of the gamma function, i.e., the derivative of log (Γ(x)), is called the
digamma function and is denoted by ψ(x). Taking logs and differentiating in Theorem 2.4.2 gives

−ψ(x) = γ +
1
x
−
∞∑
k=1

(
1
k
− 1
k + x

)
,

and, for x = 1,

−ψ(1) = γ + 1−
∞∑
k=1

(
1
k
− 1
k + 1

)
= γ.

Since ψ(1) = Γ′(1)
Γ(1) and Γ(1) = 1, the proof is complete. ♠

Exercise 2.4.3. Show that ψ(n) = −γ +
n−1∑
k=1

1
k

for n ≥ 2 and an integer. Find Γ′(2), Γ′(3), and Γ′(17).

Exercise 2.4.4. Show that ψ(1
2 ) = −γ−2 log 2 and ψ(n+ 1

2 ) = −γ−2 log 2+2
(

1 + 1
3 + 1

5 + · · ·+ 1
2n−1

)
for n ≥ 1 and an integer.

Exercise 2.4.5 (Difference Equation). Show that ψ(x + 1) = ψ(x) + 1
x .

2.5. Evaluation of a Class of Infinite Products

Suppose un is a rational function of n written as

un =
A(n− a1)(n− a2) · · · (n− ak)

(n− b1)(n− b2) · · · (n− bj)
.

In order for the product
∞∏
n=1

un to converge absolutely, we need A = 1 and j = k, because otherwise un 6→ 1

as n→∞. Thus, we are led to the product

P =
∞∏
n=1

un =
∞∏
n=1

(n− a1)(n− a2) · · · (n− ak)
(n− b1)(n− b2) · · · (n− bk)

where the general term un can be written as

un =
(

1− a1

n

)
· · ·
(

1− ak
n

)(
1− b1

n

)−1

· · ·
(

1− bk
n

)−1

= 1− a1 + a2 + · · ·+ ak − b1 − b2 − · · · − bk
n

+O(n−2)

where the Binomial Theorem was used to expand the negative powers. Absolute convergence forces the 1
n

term to be 0, or a1 + · · ·+ak− b1−· · ·− bk = 0. Thus, exp (a1+a2+···+ak−b1−b2−···−bk
n ) = 1, and can multiply

un without changing P .

P =
∞∏
n=1

(
1− a1

n

)
e
a1
n

(
1− a2

n

)
e
a2
n · · ·

(
1− ak

n

)
e
ak
n(

1− b1
n

)
e
b1
n

(
1− b2

n

)
e
b2
n · · ·

(
1− bk

n

)
e
bk
n
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Now use Theorem 2.4.2 to express P as

P =
∞∏
n=1

(n− a1)(n− a2) · · · (n− ak)
(n− b1)(n− b2) · · · (n− bk)

=
k∏
i=1

Γ(1− bi)
Γ(1− ai)

. (2.5.1)

Exercise 2.5.1. Fill in all the details in the derivation of equation (2.5.1).

Exercise 2.5.2. Evaluate, if possible,

∞∏
n=1

(n+ 2)(n+ 5)(n+ 7)
(n+ 4)2(n+ 6)

.

Example 2.5.1. Evaluate x
(

1− x

1n
)(

1− x

2n
)(

1− x

3n
)
· · ·, where n is a positive integer.

P = x

∞∏
k=1

(
1− x

kn

)
= x

∞∏
k=1

(
kn − (x1/n)n

kn

)
.

Let α = e
2π i
n so that αn = e2π i = 1. Note that the n nth roots of 1 are α0, α1, . . . , αn−1. Let z = x1/n. Then

kn− zn = (k−α0z)(k−α1z) · · · (k−αn−1z). (Remember that the “unknown” is k, the product index.) We
can now write

P = zn
∞∏
k=1

(k − α0z)(k − α1z) · · · (k − αn−1z)
(k − 0)(k − 0) · · · (k − 0)

.

Clearly, b1 + b2 + · · ·+ bn = 0. The sum a1 + a2 + · · ·+ an is the same as z(α0 +α1 + · · ·+αn−1), and since
the αj ’s are the roots of a polynomial of degree n with no degree (n − 1) term, their sum is 0. Hence the
product is absolutely convergent, and equation (2.5.1) may be applied to get

P = zn
n−1∏
j=0

Γ(1)
Γ(1− αjz)

= zn
1

−α0zΓ(−α0z)(−α1z)Γ(−α1z) · · · (−αn−1z)Γ(−αn−1z)

=
1

(−1)nα1+2+···+(n−1)Γ(−x1/n)Γ(−α1x1/n) · · ·Γ(−αn−1x1/n

Since α1+2+···+(n−1) = (−1)n−1, we get

P =
1

−Γ(−x1/n)Γ(−α1x1/n) · · ·Γ(−αn−1x1/n)
.

Exercise 2.5.3. Evaluate (1− z)
(
1 + z

2

) (
1− z

3

) (
1 + z

4

)
· · ·.

Exercise 2.5.4. Evaluate
∏∞
n=2

(
1− 1

n2

)
,
∏∞
n=k+1

(
1− k2

n2

)
, and

∏∞
n=k+1

(
1− km

nm

)
. In the last product,

m is a positive integer.
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Chapter 3. Elliptic Integrals and Elliptic Functions

3.1. Motivational Examples

Example 3.1.1 (The Pendulum). A simple, undamped pendulum of length L has motion governed by
the differential equation

u′′ +
g

L
sinu = 0, (3.1.1)

where u is the angle between the pendulum and a vertical line, g is the gravitational constant, and ′ is
differentiation with respect to time. Consider the “energy” function (some of you may recognize this as a
Lyapunov function):

E(u, u′) =
(u′)2

2
+
∫ u

0

g

L
sin z dz =

(u′)2

2
+
g

L
(1− cosu) .

For u(0) and u′(0) sufficiently small (3.1.1) has a periodic solution. Suppose u(0) = A and u′(0) = 0. At
this point the energy is g

L (1− cosA), and by conservation of energy, we have

(u′)2

2
+
g

L
(1− cosu) =

g

L
(1− cosA) .

Simplifying, and noting that at first u is decreasing, we get

du

dt
= −

√
2g
L

√
cosu− cosA.

This DE is separable, and integrating from u = 0 to u = A will give one-fourth of the period. Denoting the
period by T , and realizing that the period depends on A, we get

T (A) = 2

√
2L
g

∫ A

0

du√
cosu− cosA

. (3.1.2)

If A = 0 or A = π there is no motion (do you see why this is so physically?), so assume 0 < A < π. Let
k = sin A

2 , making cosA = 1− 2k2, and also let sin u
2 = k sin θ. Substituting into (3.1.2) gives

T (A) = 4

√
L

g

∫ π
2

0

dθ√
1− k2 sin2 θ

. (3.1.3)

Since 0 < A < π, we have 0 < k < 1, and the integral in (3.1.3) cannot be evaluated in terms of elementary
functions. This integral is the complete elliptic integral of the first kind and is denoted by K, K(k), or K(m)
(where m = k2).

K = K(k) = K(m) =
∫ π

2

0

dθ√
1− k2 sin2 θ

. (3.1.4)

A slight generalization, replacing the upper limit by a variable φ, with 0 ≤ φ ≤ π/2, yields the incomplete
elliptic integral of the first kind, denoted K(φ | k) or K(φ |m).

K(φ | k) = K(φ |m) =
∫ φ

0

dθ√
1− k2 sin2 θ

. (3.1.5)

Exercise 3.1.1. Fill in all the details in Example 3.1.1.
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Example 3.1.2 (Circumference of an Ellipse). Let an ellipse be given by
x2

a2
+
y2

b2
= 1, where we assume

that a < b. In parametric form, the ellipse is x = a cos θ, y = b sin θ, and the circumference L is given by

L = 4
∫ π

2

0

√
a2 sin2 θ + b2 cos2 θ dθ

= 4b
∫ π

2

0

√
1− (1− a2

b2
) sin2 θ dθ

= 4b
∫ π

2

0

√
1− k2 sin2 θ dθ,

where k2 = 1 − a2

b2 . Again, the integral cannot be evaluated in terms of elementary functions except in
degenerate cases (k = 0 or k = 1). Integrals of the form

E = E(k) = E(m) =
∫ π

2

0

√
1− k2 sin2 θ dθ (3.1.6)

are called complete elliptic integrals of the second kind (as before, m = k2), and integrals of the form

E(φ | k) = E(φ |m) =
∫ φ

0

√
1−m sin2 θ dθ (3.1.7)

are called incomplete elliptic integrals of the second kind.

Exercise 3.1.2. Show that, in the setting of Example 3.1.2, k is the eccentricity of the ellipse.

There are elliptic integrals of the third kind, denoted by Π. As before, if the upper limit in the integral is
π/2, the integral is called complete.

Π(φ | k,N) =
∫ φ

0

dθ

(1 +N sin2 θ)
√

1− k2 sin2 θ
. (3.1.8)

Unfortunately, I don’t know any nice motivating examples for this case. The following is lifted verbatim from
Whittaker and Watson, page 523, and and assumes knowledge of things we have not covered. Understanding
of it is something to which you are encouraged to aspire.

Example 3.1.3 (Rigid Body Motion). It is evident from the expression of Π(u, a) in terms of Theta-
functions that if u, a, k are real, the average rate of increase of Π(u, a) as u increases is Z(a), since Θ(u±a) is
periodic with respect to the real period 2K. This result determines the mean precession about the invariable
line in the motion of a rigid body relative to its centre [Whittaker and Watson were British] of gravity under
forces whose resultant passes through its centre of gravity. It is evident that, for purposes of computation, a
result of this nature is preferable to the corresponding result in terms of Sigma-functions and Weierstrassian
Zeta-Functions, for the reasons that the Theta-functions have a specially simple behaviour with respect to
their real period - the period which is of importance in Applied Mathematics - and that the q-series are much
better adapted for computation than the product by which the Sigma-function is most simply defined.

Before we consider elliptic integrals in general, look back at Example 3.1.1. By either the Binomial Theorem
or Taylor’s Theorem,

(
1− k2 sin2 θ

)−1/2
= 1 +

1
2
k2 sin2 θ +

1
2
· 3

4
k4 sin4 θ +

1
2
· 3

4
· 5

6
k6 sin6 θ + · · · .
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and so

K =
∫ π

2

0

dθ√
1− k2 sin2 θ

=
∞∑
n=0

∫ π
2

0

(2n)!
22n(n!)2

k2n sin2n θ dθ.

By Wallis’ formula, we get

K =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

k2n =
π

2

[
1 +

(
1
2

)2

k2 +
(

1 · 3
2 · 4

)2

k4 +
(

1 · 3 · 5
2 · 4 · 6

)2

k6 + · · ·
]
.

This series can be used to approximate the value of K. Note that |k| < 1 is necessary for convergence.

Exercise 3.1.3. Express E as a power series in powers of k.

The functions K, E, and Π are tabulated in A&S and are part of Mathematica and Maple.

3.2. General Definition of Elliptic Integrals

If R(x, y) is a rational algebraic function of x and y, the integral
∫
R(x, y) dx can be evaluated in terms of

elementary functions if y =
√
ax+ b or y =

√
ax2 + bx+ c. Things are not so nice if y2 is a cubic or quartic,

however.

Exercise 3.2.1. Evaluate
∫
xy dx and

∫
1
y dx when y =

√
ax+ b and y =

√
ax2 + bx+ c.

Definition 3.2.1. If R(x, y) is a rational function of x and y and y2 is a cubic or quartic polynomial in x
with no repeated factors, then the integral

∫
R(x, y) dx is an elliptic integral.

So, the trigonometry in the above examples notwithstanding, elliptic integrals are concerned with integrating
algebraic functions that you couldn’t handle in second-semester calculus. Given an elliptic integral, the
problem is to reduce it to a recognizable form.

Example 3.2.1. Evaluate I =
∫ ∞

1

dx√
x4 − 1

. Here, y2 = x4−1 andR(x, y) = 1
y . A sequence of substitutions

will convert the integral to a form we have seen. First, let x = 1
t to get I =

∫ 1

0

dt√
1− t4

. Next, let t = sinφ,

giving I =
∫ π

2

0

dφ√
2− cos2 φ

. Finally, let φ = π
2 − θ to get

I =
∫ π

2

0

dθ√
2− sin2 θ

=
1√
2

∫ π
2

0

dθ√
1− 1

2 sin2 θ
=

1√
2
K
(

1
2

)
.

Exercise 3.2.2. Evaluate

∫ π
2

0

dx√
sinx

and

∫ π
2

0

√
cosx dx in terms of complete elliptic integrals, and use the

tables in A&S to get numerical values. [Hint: Although not the only way, the substitution cos (·) = cos2 u
can be used at some stage in both problems.] Express these integrals in terms of the gamma function using
Theorems 2.2.2 and 2.2.4. Also try integrating these directly using Mathematica or Maple.
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3.3. Evaluation of Elliptic Integrals

A systematic way to evaluate elliptic integrals is desirable. Since R(x, y) is a rational function of x and

y, we can write R(x, y) =
y P (x, y)Q(x,−y)
y Q(x, y)Q(x,−y)

, where P and Q are polynomials. Now Q(x, y)Q(x,−y) is an

even function of y, making it a polynomial in x and y2, and thus a polynomial in x. When y P (x, y)Q(x, y)
is expanded, even powers of y can be written as polynomials in x and odd powers of y can be written as
(polynomials in x) times y, so the numerator of R is linear in y. We then have

R(x, y) =
R1(x) + y R2(x)

y
= R2(x) +

R1(x)
y

where R1 and R2 are rational functions of x. The integration problem has been reduced to∫
R(x, y) dx =

∫
R2(x) dx +

∫
R1(x)
y

dx.

The first integral can be done by second-semester calculus methods, and the second one will be studied
further. Recall that y2 is a cubic or quartic in x. Think of a cubic as a quartic with the coefficient of x4

equal to 0. Then the following factorization is useful.

Theorem 3.3.1. Any quartic in x with no repeated factors can be written in the form[
A1(x− α)2 +B1(x − β)2

] [
A2(x− α)2 +B2(x− β)2

]
where, if the coefficients in the quartic are real, then the constants A1, B1, A2, B2, α, and β are real.

Proof. Any quartic Q(x) with real coefficients can be expressed as Q(x) = S1(x)S2(x) where S1 and S2

are quadratics. The complex roots (if any) of the quartic occur in conjugate pairs, so there are three cases.

Case 1. Four real roots. Call the roots {ri}, and assume r1 < r2 < r3 < r4. Let
S1(x) = (x − r1)(x − r2) and S2(x) = (x − r3)(x − r4), with an appropriate constant
multiplier in case the coefficient of x4 is not 1. Note that the roots of S1 and S2 do not
interlace.

Case 2. Two real roots and two complex roots. Denote the real roots by r1 and r2, and
the complex roots by ρ1±ρ2i. Let S1(x) = (x−r1)(x−r2) and S2(x) = x2−2ρ1 x+(ρ2

1+ρ2
2).

Case 3. Four complex roots. Call the roots ρ1 ± ρ2i and ρ3 ± ρ4i. Let S1(x) =
x2 − 2ρ1 x+ (ρ2

1 + ρ2
2) and S2(x) = x2 − 2ρ3 x+ (ρ2

3 + ρ2
4).

In case y2 is a cubic, we simply eliminate one real factor in Case 1 or Case 2. Case 3 will not apply if y2 is
a cubic. So, in general, we have

S1(x) = a1x
2 + 2b1x+ c1 and S2(x) = a2x

2 + 2b2x+ c2.

Now we look for constants λ such that S1(x)− λS2(x) is a perfect square. Since S1(x)− λS2(x) is simply a
quadratic in x, it is a perfect square if and only if the discriminant is zero, or (a1−λa2)(c1−λc2)−(b1−λb2)2 =
0. This discriminant is a quadratic in λ, and has two roots, λ1 and λ2. We get

S1(x)− λ1S2(x) = (a1 − λ1a2)
[
x+

b1 − λ1b2
a1 − λ1b2

]2

= (a1 − λ1a2)(x− α)2, (3.3.1)

S1(x)− λ2S2(x) = (a1 − λ2a2)
[
x+

b1 − λ2b2
a1 − λ2b2

]2

= (a1 − λ2a2)(x− β)2, (3.3.2)

Now solve equations (3.3.1) and (3.3.2) for S1(x) and S2(x) to get the required forms. ♠
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Example 3.3.1. Consider Q(x) = 3x4− 16x3 + 24x2− 16x+ 4 = (3x2− 4x+ 2)(x2− 4x+ 2). Mathematica
or Maple is handy for the factorization. For S1(x) − λS2(x) to be a perfect square, we need (3 − λ)(2 −
2λ)− (−2 + 2λ)2 = 0, which has solutions λ1 = −1 and λ2 = 1. So we get S1(x) = 2(x− 1)2 + (x− 0)2 and
S2(x) = 2(x− 1)2 − (x− 0)2.

Exercise 3.3.1. Fill in all the details in the proof of Theorem 3.3.1 and in Example 3.3.1.

If b1 = b2 = 0, there appears to be a breakdown in the form specified in Theorem 3.3.1. In this case you
can set up S1 and S2 with complex coefficients to get the form in the theorem. In practice, this will not be
necessary, however, because the form of the integral will already be one toward which you are working.

In the integral
∫ R1(x)

y dx, with the denominator written as in Theorem 3.3.1, make the substitution

t =
x− α
x− β , dx = (x− β)2(α − β)−1 dt.

This gives

y2 =
[
A1(x− α)2 +B1(x − β)2

] [
A2(x− α)2 +B2(x− β)2

]
= (x− β)4

(
A1t

2 +B1

) (
A2t

2 +B2

)
and the integrand becomes

R1(x)

[
(α− β)−1dt√

(A1t2 +B1) (A2t2 +B2)

]
.

Finally, R1(x) can be written as ±(α− β)R3(t) where R3 is a rational function of t.

Lemma 3.3.1. There exist rational functions R4 and R5 such that R3(t) +R3(−t) = 2R4(t2) and R3(t)−
R3(−t) = 2t R5(t2). Therefore, R3(t) = R4(t2) + t R5(t2).

Exercise 3.3.2. Use Mathematica or Maple to verify Lemma 3.3.1 for several rational functions of your
choice, including at least one with arbitrary coefficients. Mathematica commands which might be useful are
Denominator, Expand, Numerator, and Together. Then prove the lemma. [Hint: Check for even and odd
functions.]

The integral
∫ R1(x)

y dx is now reduced to

∫
R4(t2) dt√

(A1t2 +B1) (A2t2 +B2)
+
∫

t R5(t2) dt√
(A1t2 +B1) (A2t2 +B2)

.

The substitution u = t2 allows the second integral to be evaluated in terms of elementary functions. If R4(t2)
is expanded in partial fractions1 the first integral is reduced to sums of integrals of the following type:∫

t2m
[(
A1t

2 +B1

) (
A2t

2 +B2

)]−1/2
dt (3.3.3)∫

(1 +Nt2)−m
[(
A1t

2 +B1

) (
A2t

2 +B2

)]−1/2
dt (3.3.4)

1 The Apart command in Mathematica does this.
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where in (3.3.3) m is an integer, and in (3.3.4) m is a positive integer and N 6= 0. Reduction formulas can
be derived to reduce (3.3.3) or (3.3.4) to a combination of known functions and integrals in the following
canonical forms: ∫ [(

A1t
2 +B1

) (
A2t

2 +B2

)]−1/2
dt, (3.3.5)∫

t2
[(
A1t

2 +B1

) (
A2t

2 +B2

)]−1/2
dt, (3.3.6)∫

(1 +Nt2)−1
[(
A1t

2 +B1

) (
A2t

2 +B2

)]−1/2
dt. (3.3.7)

Equations (3.3.5), (3.3.6), and (3.3.7) are the elliptic integrals of the first, second, and third kinds, so named
by Legendre.

Exercise 3.3.3. By differentiating t
√

(A1t2 +B1) (A2t2 +B2), obtain a reduction formula for (3.3.3) when
m = 2. Do you see how this process can be extended to all positive m?

Exercise 3.3.4. Find a reduction formula for (3.3.3) when m = −1.

Exercise 3.3.5. Show that the transformation t = sin θ applied to (3.1.4), (3.1.6), or (3.1.8) yields integrals
of the form (3.3.5), (3.3.6), and (3.3.7).

For real elliptic integrals, all the essentially different combinations of signs in the radical are given in the
following table.

A1 + + − + + −

B1 + − + − − +

A2 + + + + − −

B2 + + + − + +

Table 3.3.1.

Example 3.3.2. Find the appropriate substitution for the second column of Table 3.3.1. Assume that A1,

B1, A2, and B2 are all positive, so the radical is
√

(A1t2 −B1) (A2t2 +B2). Substitute t =
√

B1
A1

sec θ,

dt =
√

B1
A1

sec θ tan θ dθ so that

dt√
(A1t2 −B1) (A2t2 +B2)

=
dθ√

A2B1 +A1B2 cos2 θ
=

1√
A2B1 +A1B2

dθ√
1− B2A1

B2A1+B1A2
sin2 θ

.

Here, m = k2 = B2A1
B2A1+B1A2

< 1, and we have the form of (3.1.4) or (3.1.5).

Exercise 3.3.6. Fill in the details of Example 3.3.2, and find the value of

∫ ∞
1√
2

dt√
(2t2 − 1) (t2 + 2)

.
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Exercise 3.3.7. Pick another column of Table 3.3.1 and find the appropriate substitution. Consult with
your classmates so that every column is considered by someone.

3.4. The Jacobian Elliptic Functions

Trigonometric functions, even though they can do the job, are not the best things to use when reducing
elliptic integrals. The ideal substitution in, say, (3.3.5), would be one where we have functions f , g, and h
such that

t = f(v), dt = g(v)h(v) dv, A1t
2 +B1 = g2(v), and A2t

2 +B2 = h2(v).

Adjustments for the constants would have to be made, of course, but such a substitution would reduce
(3.3.5) to

∫
dv. Fortunately, such functions exist! They are called the Jacobian elliptic functions and can be

thought of as extensions of the trigonometric functions.

Consider the function defined by an integral as follows:

u = g(x) =
∫ x

0

1√
1− t2

dt =
∫ φ

0

dθ = φ = sin−1 x.

(Here we used the substitution t = sin θ, x = sinφ, but we really don’t want to focus on this part.)
Assume that “sin” and “sin−1” are simply names we came up with for the functions involved here, making
“sin−1” nothing more than another name for “g”, which is defined by the integral. Thinking similarly, we
can say that g−1(u) = sinu. Thus, we have defined the function “sin” as the inverse of the function g
which is given in terms of the integral. A table of values for g can be calculated by numerical integration
and this table with the entries reversed produces a table for g−1. Now a new function can be defined by

h−1(u) =
√

1− [g−1(u)]2. Clearly,
[
g−1(u)

]2 +
[
h−1(u)

]2 = 1, and we might want to give “h−1” a new
name, such as “cos”, for instance. All of trigonometry can be developed in this way, without reference to
angles, circles, or any of the usual stuff associated with trigonometry. We won’t do trigonometry this way,
because you already know that subject, but we will use this method to study the Jacobian elliptic functions.

In the spirit of the last paragraph, but assuming you know all about trigonometry, consider, for 0 ≤ m ≤ 1,

u =
∫ x

0

1√
(1− t2) (1−mt2)

dt =
∫ φ

0

dθ√
1−m sin2 θ

(3.4.1)

where the integrals are related by the substitution t = sin θ, x = sinφ. Note that, for fixed m, the integrals
define u as a function of x or φ, and so a table of values for this function and its inverse can be constructed
by numerical integration as discussed above.

Definition 3.4.1. The Jacobian elliptic functions sn, cn, and dn are

sn u = sinφ = x, cn u = cosφ =
√

1− x2, dn u =
√

1−m sin2 φ =
√

1−mx2

where u and φ or x are related by (3.4.1). In particular, sn is the inverse of the function of x defined by
the first integral in (3.4.1). Sometimes specific dependence on the parameter m is denoted by sn(u |m),
cn(u |m), and dn(u |m).

Some immediate consequences of Definition 3.4.1 are, for any m,

sn2u+ cn2u = 1, m sn2u+ dn2u = 1, sn(0) = 0, cn(0) = dn(0) = 1
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Exercise 3.4.1. Show that sn is an odd function and cn is an even function.

The following notation and terminology applies to all Jacobian elliptic functions:

u : argument

m : parameter

m1 = 1−m : complementary parameter

φ : amplitude, denoted φ = amu

k =
√
m : modulus

k′ =
√

1− k2 : complementary modulus

Exercise 3.4.2. Show that
dφ

du
= dn u, and that

d

du
sn u = cn u dn u. Also find

d

du
cn u and

d

du
dn u.

Exercise 3.4.3. Derive Formulas 17.4.44, 17.4.45, and 17.4.52 on page 596 of A&S. This verifies that
sn, cn, and dn are among the kinds of functions we wanted at the beginning of this section.

Exercise 3.4.4. Show that sn(u | 0) = sinu, cn(u | 0) = cosu, and dn(u | 0) = 1. Also show that sn(u | 1) =
tanhu and cn(u | 1) = dn(u | 1) = sech u.

There are nine other Jacobian elliptic functions, all of which can be expressed in terms of sn, cn, and dn
in much the same way all other trig functions can be expressed in terms of sin and cos. The notation uses
only the letters s, c, d, and n according to the following rules. First, quotients of two of sn, cn, and dn are
denoted by the first letter of the numerator function followed by the first letter of the denominator function.
Second, reciprocals are denoted by writing the letters of the function whose reciprocal is taken in reverse
order. Thus

ns(u) =
1

sn(u)
, nc(u) =

1
cn(u)

, nd(u) =
1

dn(u)

sc(u) =
sn(u)
cn(u)

, sd(u) =
sn(u)
dn(u)

, cd(u) =
cn(u)
dn(u)

(3.4.2)

cs(u) =
cn(u)
sn(u)

, ds(u) =
dn(u)
sn(u)

, dc(u) =
dn(u)
cn(u)

Quotients of any two Jacobian elliptic functions can be reduced to a quotient involving sn, cn, and/or dn.
For example

sc(u)
sd(u)

= sc(u) · ds(u) =
sn(u)
cn(u)

· dn(u)
sn(u)

=
dn(u)
cn(u)

= dc(u).

3.5. Addition Theorems

The Jacobian elliptic functions turn out to be not only periodic, but doubly periodic. Viewed as functions
of a complex variable, they exhibit periodicity in both the real and imaginary directions. The following
theorem will be quite useful in the next section for studying periodicity. Think about this theorem in the
light of Exercise 3.4.4.

Theorem 3.5.1 (Addition Theorem). For a fixed m,

sn(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
. (3.5.1)
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Proof. Let α be a constant, and suppose u and v are related by u + v = α, so that
dv

du
= −1. Denote

differentiation with respect to u by ,̇ and let s1 = sn(u), s2 = sn(v). Then, keeping in mind that derivatives
of s2 require the chain rule,

ṡ2
1 = (1 − s2

1)(1−ms2
1) and ṡ2

2 = (1− s2
2)(1−ms2

2).

If we differentiate again and divide by 2ṡ1 and 2ṡ2, we get

s̈1 = −(1 +m)s1 + 2ms3
1 and s̈2 = −(1 +m)s2 + 2ms3

2.

Thus
s̈1s2 − s̈2s1

ṡ2
1s

2
2 − ṡ2

2s
2
1

=
−2ms1s2

1−ms2
1s

2
2

and multiplying both sides by ṡ1s2 + ṡ2s1 gives
d
du (ṡ1s2 − ṡ2s1)
ṡ1s2 − ṡ2s1

=
d
du (1−ms2

1s
2
2)

1−ms2
1s

2
2

.

Integration and clearing of logarithms gives
ṡ1s2 − ṡ2s1

1−ms2
1s

2
2

=
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
= C. (3.5.2)

Equation (3.5.2) may be thought of as a solution of the differential equation du + dv = 0. But u + v = α
is also a solution of this differential equation, so the two solutions must be dependent, i.e., there exists a
function f such that

f(u+ v) =
sn(u) cn(v) dn(v) + sn(v) cn(u) dn(u)

1−msn2(u) sn2(v)
.

If v = 0 we see from Exercise 3.4.4 that f(u) = sn(u), so f = sn and the theorem is proved. ♠

Exercise 3.5.1. Derive the following addition theorems for cn and dn.

cn(u+ v) =
cn(u) cn(v)− sn(u) sn(v) dn(u) dn(v)

1−msn2(u) sn2(v)
(3.5.3)

dn(u+ v) =
dn(u) dn(v)−msn(u) sn(v) cn(u) cn(v)

1−msn2(u) sn2(v)
. (3.5.4)

3.6. Periodicity

Since u =
∫ x

0

1√
(1− t2) (1−mt2)

dt, means that sn(u |m) = x, if we let K =
∫ 1

0

1√
(1− t2) (1−mt2)

dt,

then sn(K |m) = 1, cn(K |m) = 0, and dn(K |m) =
√

1−m = k′. By the addition theorem for sn, we get

sn(u+K) =
sn(u) cn(K) dn(K) + sn(K) cn(u) dn(u)

1−msn2(u) sn2(K)
=
cn(u)
dn(u)

= cd(u).

Similarly, the addition theorems for cn and dn give

cn(u+K) =
cn(u) cn(K)− sn(u) sn(K) dn(u) dn(K)

1−msn2(u) sn2(K)
= −
√

1−msd(u)

dn(u +K) =
dn(u) dn(K)−msn(u) sn(K) cn(u) cn(K)

1−msn2(u) sn2(K)
=
√

1−mnd(u).

These results can be used to get

sn(u+ 2K) = −sn(u) cn(u+ 2K) = −cn(u) dn(u + 2K) = dn(u)

and
sn(u+ 4K) = sn(u) cn(u+ 4K) = cn(u).

Thus, sn and cn have period 4K, and dn has period 2K, where K = K(m) is the elliptic integral of the first
kind. Note that we say “a period” instead of “the period” in the following theorem.
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Theorem 3.6.1 (First Period Theorem). If K =
∫ 1

0

1√
(1− t2) (1−mt2)

dt =
∫ π

2

0

dθ√
1−m sin2 θ

, then

4K is a period of sn and cn, and 2K is a period of dn.

Exercise 3.6.1. Fill in the details of the proof of Theorem 3.6.1.

To study other possible periods, let K ′ =
∫ 1

0

1√
(1− t2) (1−m1t2)

dt. K ′ is the same function of m1 as K

is of m. Suppose 0 < m < 1 so that both k and k′ are also strictly between 0 and 1.

Exercise 3.6.2. In the integral for K ′, substitute s2 = 1
1−m1t2

to get K ′ =
∫ 1

k

1

1√
(s2 − 1) (1− k2t2)

ds.

Now consider the integral
∫ 1

k

0

1√
(1− t2) (1− k2s2)

dt. Since 1
k > 1, the integrand has a singularity at t = 1,

and the integral has complex values for 1 < t < 1
k . To deal with these problems, we consider t a complex

variable and look at the following path from the origin to ( 1
k , 0) in the complex plane:

0 1−δ 1 1+δ 1
k

Figure 3.6.1

When t is on the semicircle near 1 + δ, t = 1 + δeiε for some ε > 0. This makes 1− t2 = δ(2 + δeiε)ei(π+ε).
In order to get the principal value of the square root, we must replace ei(π+ε) by e−i(π−ε). Then, as ε→ 0+,
so that t→ 1 + δ clockwise on the semicircle, we get√

1− t2 = lim
ε→0+

√
δ(2 + δeiε)ei(π+ε)/2

=
√
δ(2 + δ)e−iπ/2

= −i
√
t2 − 1.

We now can see that∫ 1
k

0

1√
(1− t2) (1− k2s2)

dt =
∫ 1

0

1√
(1− t2) (1− k2s2)

dt+
∫ 1

k

1

1√
(1− t2) (1− k2s2)

dt

= K(m)− 1
i

∫ 1
k

1

1√
(1− t2) (1− k2s2)

dt

= K(m) + iK ′(m).

Therefore,
sn(K + iK ′) = 1/k, from which we get dn(K + iK ′) = 0

and

cn(K + iK ′) = lim
x→1/k

√
1− x2 = lim

x→1/k

[
−i
√
x2 − 1

]
= −i k

′

k
,

where the limits are taken along the path shown in Figure 3.6.1.
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Exercise 3.6.3. Show that

sn(u+K + iK ′) =
1
k
dc(u), cn(u+K + iK ′) = − i k

′

k
nc(u), dn(u +K + iK ′) = i k′ sc(u).

Exercise 3.6.4. Show that

sn(u+ 2K + 2iK ′) = −sn(u), cn(u+ 2K + 2iK ′) = cn(u), dn(u+ 2K + 2iK ′) = −dn(u).

Exercise 3.6.5. Show that

sn(u+ 4K + 4iK ′) = sn(u), dn(u+ 4K + 4iK ′) = dn(u).

So, the Jacobian elliptic functions also have a complex period.

Theorem 3.6.2 (Second Period Theorem). If K =
∫ 1

0

dt√
(1− t2) (1−mt2)

, and

K ′ =
∫ 1

0

dt√
(1− t2) (1−m1t2)

, then 4K + 4iK ′ is a period of sn and dn, and 2K + 2iK ′ is a period of cn.

Theorem 3.6.3 (Third Period Theorem). If K ′ =
∫ 1

0

dt√
(1− t2) (1−m1t2)

, then 4iK ′ is a period of

cn and dn, and 2iK ′ is a period of sn.

Exercise 3.6.6. Prove Theorem 3.6.3. [Hint: iK ′ = −K +K + iK ′.]

The numbers K and iK ′ are called the real and imaginary quarter periods of the Jacobian elliptic functions.

3.7. Zeros, Poles, and Period Parallelograms

Series expansions of sn, cn, and dn around u = 0 are

sn(u |m) = u− 1 +m

6
u3 +

1 + 14m+m2

120
u5 +O(u7)

cn(u |m) = 1− 1
2
u2 +

1 + 4m
24

u4 +O(u6)

dn(u |m) = 1− m

2
u2 +

4m+m2

24
u4 +O(u6)

Series expansions of sn, cn, and dn around u = iK ′ are

sn(u+ iK ′ |m) =
1

k sn(u |m)
=

1
k

[
1
u

+
1 +m

6
u+

7− 22m+ 7m2

360
u3 +O(u4)

]
cn(u+ iK ′ |m) =

−i
k
ds(u |m) =

−i
k

[
1
u

+
1− 2m

6
u+

7 + 8m− 8m2

360
u3 +O(u4)

]
dn(u+ iK ′ |m) = −i cs(u |m) = −i

[
1
u

+
−2 +m

6
u+
−8 + 8m+ 7m2

360
u3 +O(u4)

]
From these expansions we can identify the poles and residues of the Jacobian elliptic functions.
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Theorem 3.7.1 (First Pole Theorem). At the point u = iK ′ the functions sn, cn, and dn have simple
poles with residues 1/k, −i/k, and −i respectively.

Theorem 3.7.2 (Second Pole Theorem). At the point u = 2K + iK ′ the functions sn and cn have
simple poles with residues −1/k and i/k. At the point u = 3iK ′ the function dn has a simple pole with
residue i.

Exercise 3.7.1. Prove both Pole Theorems. If you want to verify the series expansions, use Mathematica
or Maple.

From the period theorems we see that each Jacobian elliptic function has a smallest period parallelogram
in the complex plane. It is customary to translate period parallelograms so that no zeros or poles are on
the boundary. When this is done, we see that the period parallelogram for each Jacobian elliptic function
contains exactly two zeros and two poles in its interior. Unless stated otherwise, we shall assume that any
period parallelogram has been translated in this manner. See Figure 3.7.1, in which zeros are indicated by
a o and poles by a ∗.

K 3 K 5 K
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3 iK’

* *

*

*
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iK’

3 iK’
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*

*

*

*

*
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*

*

*

o o o

o o o

Figure 3.7.1. Period parallelograms for sn and cn.

Exercise 3.7.2. Sketch period parallelograms for dn, sc, and cd with no zeros or poles on the boundaries.

If C denotes the counterclockwise boundary of a period parallelogram for some Jacobian elliptic function,
the Residue Theorem from complex analysis says that the the integral around C of the Jacobian elliptic
function is 1/2πi times the sum of the residues at the two poles inside C. In the next section we will see
that for elliptic functions in general this integral is zero.

Exercise 3.7.3. If C denotes the boundary of a period parallelogram, oriented counterclockwise, compute∫
C
sn(u) du,

∫
C
cn(u) du, and

∫
C
dn(u) du.

A useful device for dealing with the Jacobian elliptic functions is the doubly infinite array, or lattice, consisting
of the letters s, c, d, and n shown in Figure 3.7.2. Think of this lattice in the complex plane and denote one
of the points labelled s by Ks. Then denote the point to the east labelled c by Kc, the point to the north
labelled n by Kn, and the point to the southwest labelled d by Kd. If we put the origin at Ks, then the sum
(of complex numbers, or of vectors) Ks + Kc + Kd + Kn = 0. Assume the scale on the lattice is such that
Kc = K, Kn = iK ′, and Kd = −K − iK ′, where K and iK ′ are the real and imaginary quarter periods.
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n d n d n d n

s c s c s c s

n d n d n d n

s c s c s c s

Figure 3.7.2. This pattern is repeated indefinitely on all sides.

If the letters p, q, r, and t are any permutation of s, c, d, and n, then the Jacobian elliptic function pq has
the following properties. See also A&S, p.569.

(1) pq is doubly periodic with a simple zero at Kp and a simple pole at Kq.

(2) The step Kq−Kp from the zero to the pole is a half-period; the numbers Kc, Kn, and Kd not equal
to Kq −Kp are quarter-periods.

(3) In the series expansion of pq around u = 0 the coefficient of the leading term is 1.

Here are plots of the modular surfaces over one period parallelogram of the functions w = sn(u | 1
2 ) and

w = dn(u | 1
2 ), where u = x + i y. Complex functions of a complex variable require four dimensions for a

complete graph, but a useful compromise is to plot the modulus, or absolute value of a complex function,
which is essentially a real function of the real and imaginary parts of the complex variable. The surfaces in
Figure 3.7.3 are plots of w = | sn(x+ i y | 1

2 ) | and w = | dn(x+ i y | 1
2 ) |. The depressions correspond to zeros

and the towers correspond to poles.
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Figure 3.7.3. Modular surfaces of sn and dn.

Exercise 3.7.4. Use the lattice in Figure 3.7.2 to determine the periods, zeros, and poles of cd and ds. Use
Mathematica or Maple to plot the modular surfaces over one period parallelogram.

Exercise 3.7.5. Why are the functions sn, cn, and dn called “the Copolar Trio” in A&S, 16.3?

3.8. General Elliptic Functions
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Definition 3.8.1. An elliptic function of a complex variable is a doubly periodic function which is mero-
morphic, i.e., analytic except for poles, in the finite complex plane.

If the smallest periods of an elliptic function are 2ω1 and 2ω2, then the parallelogram with vertices 0, 2ω1,
2ω1 + 2ω2, and 2ω2 is the fundamental period parallelogram. A period parallelogram is any translation of a
fundamental period parallelogram by integer multiples of 2ω1 and/or 2ω2. A cell is a translation of a period
parallelogram so that no poles are on the boundary. Parts of the proofs of the next few theorems depend on
the theory of functions of a complex variable. If you have not studied that subject (or if you have forgotten
it), learn what the theorems say, and come back to the proofs after you have studied the theory of functions
of a complex variable. In fact, this material should be an incentive to take a complex variables course!

Theorem 3.8.1. An elliptic function has a finite number of poles in any cell.

Outline of Proof. A cell is a bounded set in the complex plane. If the number of poles in a cell is infinite,
then by the two-dimensional Bolzano-Weierstrass Theorem, the poles would have a limit point in the cell.
This limit point would be an essential singularity of the elliptic function. It could not be a pole, because a
pole is an isolated singularity. This is a contradiction of the definition of an elliptic function. ♠

Theorem 3.8.2. An elliptic function has a finite number of zeros in any cell.

Proof. If not, then the reciprocal function would have an infinite number of poles in a cell, and as in the
proof of Theorem 3.8.1, would have an essential singularity in the cell. This point would also be an essential
singularity of the original function, contradicting the definition of an elliptic function. ♠

Theorem 3.8.3. In a cell, the sum of the residues at the poles of an elliptic function is zero.

Proof. Let C be the boundary of the cell, oriented counterclockwise, and let the vertices be given by t,
t + 2ω1, t + 2ω1 + 2ω2, and t + 2ω2, where 2ω1 and 2ω2 are the periods. Call the elliptic function f . The
sum of the residues is

1
2π i

∫
C

f(z) dz =
1

2π i

[∫ t+2ω1

t

f(z) dz +
∫ t+2ω1+2ω2

t+2ω1

f(z) dz +
∫ t+2ω2

t+2ω1+2ω2

f(z) dz +
∫ t

t+2ω2

f(z) dz
]
.

In the second integral, replace z by z + 2ω1, and in the third integral, replace z by z + 2ω2. We then get

1
2π i

∫
C

f(z) dz =
1

2π i

∫ t+2ω1

t

(f(z)− f(z + 2ω2)) dz − 1
2π i

∫ t+2ω2

t

(f(z)− f(z + 2ω1)) dz

By the periodicity of f , each of these integrals is zero. ♠

Theorem 3.8.4 (Liouville’s Theorem for Elliptic Functions). An elliptic function having no poles in
a cell is a constant.

Proof. If f is elliptic having no poles in a cell, then f is analytic both in the cell and on the boundary of the
cell. Thus, f is bounded on the closed cell, and so there is an M such that for z in the closed cell, |f(z)| < M .
By periodicity, we then have that |f(z)| < M for all z in the complex plane, and so by Liouville’s (other,
more famous) Theorem, f is constant. ♠

Definition 3.8.2. The order of an elliptic function f is equal to the number of poles, counted according to
multiplicity, in a cell.

The following lemma is useful in determining the order of elliptic functions.
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Lemma 3.8.1. If f is an elliptic function and z0 is any complex number, the number of roots of the equation
f(z) = z0 in any cell depends only on f and not on z0.

Proof. Let C be the boundary, oriented counterlockwise, of a cell, and let Z and P be the respective numbers
of zeros and poles, counted according to multiplicity, of f(z)−z0 in the cell. Then by the Argument Principle,

Z − P =
1

2π i

∫
C

f ′(z)
f(z)− z0

dz.

Breaking the integral into four parts and substituting as in the proof of Theorem 3.8.3, we get Z − P = 0.
Thus, f(z)− z0 has the same number of zeros as poles; but the number of poles is the same as the number
of poles of f , which is independent of z0. ♠

Definition 3.8.3. The order of an elliptic function f is equal to the number of zeros, counted according to
multiplicity, of f in any cell.

Exercise 3.8.1. Prove that if f is a nonconstant elliptic function, then the order of f is at least two.

Thus, in terms of the number of poles, the simplest elliptic functions are those of order two, of which there
are two kinds: (1) those having a single pole of order two whose residue is zero, and (2) those having two
simple poles whose residues are negatives of one another. The Jacobian elliptic functions are of the second
kind. An example of an elliptic function of the first kind will be given in the next section.

3.9. Weierstrass’ P-function

Let ω1 and ω2 be two complex numbers such that the quotient ω1/ω2 is not a real number, and for integers
m and n let Ωm,n = 2mω1 + 2nω2. Then Weierstrass’ P-function is defined by

P (z) =
1
z2

+
′∑

m,n

[
1

(z − Ωm,n)2
− 1

Ω2
m,n

]
, (3.9.1)

where the sum is over all integer values of m and n, and the prime notation indicates that m and n
simultaneously zero is not included. The series for P (z) can be shown to converge absolutely and uniformly
except at the points Ωm,n, which are poles.

Exercise 3.9.1. Show that P ′(z) = −2
∑
m,n

1
(z − Ωm,n)3

. Note the absence of the prime on the sum.

Exercise 3.9.2. Show that P is an even function and that P ′ is an odd function.

Theorem 3.9.1. P ′(z) is doubly periodic with periods 2ω1 and 2ω2, and therefore P ′ is an elliptic function.

Proof. The sets {Ωm,n}, {Ωm,n − 2ω1}, and {Ωm,n − 2ω2} are all the same. ♠

Theorem 3.9.2. P is an elliptic function with periods 2ω1 and 2ω2.

Proof. Since P ′(z + 2ω1) = P ′(z), we have P (z + 2ω1) = P (z) +A, where A is a constant. If z = −ω1, we
have P (ω1) = P (−ω1) +A, and since P is an even function, A = 0. Similarly, P (z + 2ω2) = P (z). ♠
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P̃ (z) = P (z) − z−2 is analytic in a neighborhood of the origin and is an even function, so P̃ has a series
expansion around z = 0:

P̃ (z) = a2z
2 + a4z

4 +O(z6)

a2 =
6
2!

′∑
m,n

1
Ω4
m,n

=
1
20
g2

g2 = 60
′∑

m,n

1
Ω4
m,n

a4 =
120
4!

′∑
m,n

1
Ω6
m,n

=
1
28
g3

g3 = 140
′∑

m,n

1
Ω6
m,n

Thus we get the following series representations.

P (z) = z−2 +
1
20
g2z

2 +
1
28
g3z

4 +O(z6)

P ′(z) = −2z−3 +
1
10
g2z +

1
7
g3z

3 +O(z5)

P (z)3 = z−6 +
3
20
g2z
−2 +

3
28
g3 +O(z2)

(P ′(z))2 = 4z−6 − 2
5
g2z
−2 − 4

7
g3 +O(z2)

Combining these leads to
(P ′(z))2 − 4P 3(z) + g2P (z) + g3 = O(z2). (3.9.1)

Exercise 3.9.3. Verify the details in the derivation of equation (3.9.1).

The left side of (3.9.1) is an elliptic function with periods the same as P and is analytic at z = 0. By
periodicity, then, it is analytic at each of the points Ωm,n. But the points Ωm,n are the only points where
the left side of (3.9.1) can have poles, so it is an elliptic function with no poles, and hence a constant. Let
z → 0 to see that the constant is 0.

Exercise 3.9.4. Verify the statements in the last paragraph.

The numbers g2 and g3 are called the invariants of P . P satisfies the differential equation

(P ′(z))2 = 4P 3(z)− g2P (z)− g3. (3.9.2)

3.10. Elliptic Functions in Terms of P and P ′

Suppose f is an elliptic function and let P be the Weierstrass elliptic function (WEF) with the same periods
as f . Then

f(z) =
1
2

[f(z) + f(−z)] +
1
2

[
(f(z)− f(−z)) (P ′(z))−1

]
P ′(z)

= (even elliptic function) + (even elliptic function)P ′(z)

So, if we can express any even elliptic function in terms of P and P ′, then we can so express any elliptic
function.
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Suppose φ is an even elliptic function. The zeros and poles of φ in a cell can each be arranged in two sets:

zeros: {a1, a2, . . . , an} and additional points in the cell congruent to {−a1,−a2, . . . ,−an}.

poles: {b1, b2, . . . , bn} and additional points in the cell congruent to {−b1,−b2, . . . ,−bn}.

Consider the function

G(z) =
1

φ(z)

n∏
j=1

(P (z)− P (aj))?

(P (z)− P (bj))?
.

Exercise 3.10.1. Prove that G is a constant function when the question marks are suitably replaced. (For
a specific case, see Example 3.10.1 below.)

Thus, φ(z) = A

n∏
j=1

(P (z)− P (aj))?

(P (z)− P (bj))?
, and we have the following theorem.

Theorem 3.10.1. Any elliptic function can be expressed in terms of the WEFs P and P ′ with the same
periods. The expression will be rational in P and linear in P ′.

A related theorem is the following.

Theorem 3.10.2. An algebraic (polynomial, I believe - LMH) relation exists between any two elliptic
functions with the same periods.

Outline of proof: Let f and φ be elliptic with the same periods. By Theorem 3.10.1, each can be
expressed as a rational function of the WEFs P and P ′ having the same periods, say f(z) = R1(P (z), P ′(z)),
φ(z) = R2(P (z), P ′(z)). We can get an algebraic relation between f and φ by eliminating P and P ′ from
these equations plus (3.9.2). ♠

Corollary 3.10.1. Every elliptic function is related to its derivative by an algebraic relation.

Proof: Clear, and left to the reader.

Example 3.10.1. Express cn z in terms of P and P ′. Since cn is even, has periods 4K and 2K+ 2iK ′, has
zeros at K and 3K, and has poles at iK ′ and 2K + iK ′, we can let a1 = K and b1 = iK ′. Thus,

A =
1
cn z

P (z)− P (K)
P (z)− P (iK ′)

.

As z → 0 we see that A = 1, so

cn z =
P (z)− P (K)
P (z)− P (iK ′)

.

Exercise 3.10.2. Let m = .5 and verify all statements in Example 3.10.1. Compare modular surface plots
of cn and its representation in terms of P .

The algebraic relation between two equiperiodic elliptic functions depends on the orders of the elliptic
functions. Recalling Lemma 3.8.1, if f has order m and φ has order n, then corresponding to any value of
f(z), there are m values of z. Corresponding to each of these m values of z there are m values of φ(z).
Similarly, to each value of φ(z) there correspond n values of f(z). Thus, the algebraic relation between f
and φ will be of degree m or lower in φ and degree n or lower in f .
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Example 3.10.2. The functions f(z) = P (z) and φ(z) = P 2(z) have orders 2 and 4, so their relation will
be of degree at most 2 in φ and at most 4 in f . The relation between them is obviously φ = f2, of less than
maximum degrees.

Example 3.10.3. Let f(z) = P (z) (order 2) and φ(z) = P ′(z) (order 3). Their relation is given by equation
(3.9.2), and is of degree 2 in φ and degree 3 in f .

3.11. Elliptic Wheels - An Application

The material in this section is taken from: Leon Hall and Stan Wagon, Roads and wheels, Mathematics
Magazine 65, (1992), 283-301. See this article for more details.

Suppose we are given a wheel in the form of a function defined by r = g(θ) in polar coordinates with the axle
of the wheel at the origin, or pole. The problem is, what road is required for this wheel to roll on so that
the axle remains level? The axle may or may not coincide with the wheel’s geometric center, and the road
is assumed to provide enough friction so the wheel never slips. Assume the road (to be found) has equation
y = f(x).

A

B

C

D

y=f(x)

O

r=g(0(x))

Figure 3.11.1. Wheel - road relationships

Three conditions will guarantee that the axle of the wheel moves horizontally on the x-axis as the wheel rolls
on the road. These conditions are illustrated in Figure 3.11.1. First, the initial point of contact must be
directly below the origin, which means that when x = 0, θ = −π/2. Second, corresponding arc lengths along
the road and on the wheel must be equal. In Figure 3.11.1, this means that the road length from A to B
must equal the wheel length from A to C. Third, the radius of the wheel must match the depth of the road
at the corresponding point, which means that OC = DB, or g(θ(x)) = −f(x). The arc length condition
gives ∫ x

0

√
1 + f ′(u)2 du =

∫ θ

−π/2

√
g(φ)2 + g′(φ)2 dφ.

Differentiation with respect to x and simplification leads to the initial value problem

dθ

dx
=

1
g(θ)

, θ(0) = −π/2,

whose solution expresses θ as a function of x. The road is then given by y = −g(θ(x)).

Exercise 3.11.1. Fill in the details of the derivation sketched above.

Example 3.11.1. Consider the ellipse with polar equation r =
k e

1− e sin θ
, where e is the eccentricity of

the ellipse and k is the distance from the origin to the corresponding directrix. The axle for this wheel is
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the focus which is initially at the origin. The details get a bit messy (guess who gets to do them!) but no
special functions are required. The solution of the IVP turns out to be

a x

2 k e
= arctan

(
tan(θ/2)− e

a

)
+ arctan

(
1 + e

a

)
,

where a =
√

1− e2. Now take the tangent of both sides and do some trig to get

(1 + e)(1− cos2(cx))
(1− e)(1 + cos(cx))2

=
1 + sin θ
1− sin θ

,

where c = a/(ke). Finally, solve for sin θ and substitute into y(x) =
k e

1− e sin θ(x)
to get the road

y = −k e
a2

(1− e cos (cx).

Thus, the road for an elliptic wheel with axle at a focus is essentially a cosine curve. Figure 3.11.2 illustrates
the case k = 1 and e = 1/

√
2.

Figure 3.11.2. The axle at a focus yields a cosine road.

Exercise 3.11.2. Fill in all the details in Example 3.11.1 for the case k = 1 and e = 1/
√

2.

Example 3.11.2. We now consider a rolling ellipse where the axle is at the center of the ellipse. The ellipse
x2/a2 + y2/b2 = 1 has polar representation r = b/

√
1−m cos2 θ, where m = 1− b2/a2 (assume a > b). The

IVP in θ and x is again separable and we get∫ θ(x)

−π/2

dφ√
1−m cos2 φ

=
∫ x

0

dt

b
.

The substitution ψ = φ+ π/2 yields ∫ θ(x)+π/2

0

dψ√
1−m sin2 ψ

=
x

b
,

which involves an incomplete elliptic integral of the first kind. In terms of the Jacobian elliptic functions,
we get sin (θ + π/2) = sn(xb |m). The road is then

y =
−b

dn(xb |m)
= −b nd(

x

b
| a

2 − b2
a2

).

See Figure 3.11.3 for the a = 1 and b = 1/2 case.

-1 1 2 3

-1

-0.8

-0.6

-0.4

-0.2

0.2

0.4

Figure 3.11.3. The axle at the center leads to Jacobian elliptic functions.
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Exercise 3.11.3. Fill in all the details in Example 3.11.2 for the case a = 1 and b = 1/2.

Exercise 3.11.4. Determine the road in terms of a Jacobian elliptic function for a center-axle elliptic wheel,
x2/a2 + y2/b2 = 1, when b > a.

3.12. Miscellaneous Integrals

Exercise 3.12.1. Evaluate

∫ ∞
x

dt√
(t2 − a2)(t2 − b2)

, where a > b. (See A&S, p. 596.)

Exercise 3.12.2. Evaluate

∫ x

a

dt√
(t2 − a2)(t2 − b2)

, where a > b. (See A&S, p. 596.)

Exercises 3.12.3-7. Do Examples 8-12, A&S, pp.603-04.
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Chapter 4. Hypergeometric Functions

4.1. Solutions of Linear DEs at Regular Singular Points

Consider the differential equation

y′′(x) + p(x) y′(x) + q(x) y(x) = 0. (4.1.1)

If either p or q has a singularity at x = x0, then x0 is a singular point of (4.1.1). The singular point x0 is
regular if both the limits

lim
x→x0

(x− x0)p(x) and lim
x→x0

(x− x0)2q(x)

exist. Call these limits, when they exist, p0 and q0. The exponents at the regular singular point x0 of (4.1.1)
are the roots of the indicial equation

r(r − 1) + p0r + q0 = 0.

If x0 is a regular singular point of (4.1.1), then one solution is representable as a Frobenius series and has
the form

y1(x) =
∞∑
k=0

ak(r)(x − x0)k+r (4.1.2)

where r is an exponent at x0, i.e., a root of the indicial equation. The coefficients ak can be found up to a
constant multiple by substituting the series into (4.1.1) and equating coefficients. Unfortunately, we are only
guaranteed one Frobenius series solution of (4.1.1), which is a second order linear homogeneous DE, and so
has two linearly independent solutions. The second solution in the neighborhood of a regular singular point
will take one of three forms.

Case 1. If the exponents do not differ by an integer, then the second solution of (4.1.1) is found by using
the other exponent in the series (4.1.2).

Case 2. If the exponents are equal, the second solution has the form

y2(x) = y1(x) log (x − x0) +
∞∑
k=1

bk(r) (x − x0)k+r ,

where r is the exponent and y1 is the solution given by (4.1.2).

Case 3. If the exponents r1 and r2 differ by a positive integer, r1 − r2 = N , then one solution is given by
(4.1.2) using r = r1, and the second solution has the form

y2(x) = C y1(x) log (x− x0) +
∞∑
k=0

ck(r2) (x− x0)k+r2 .

The constant C may or may not be zero.

Example 4.1.1. Legendre’s differential equation is

(1 − x2)y′′(x)− 2x y′(x) + n(n+ 1) y(x) = 0.

The most interesting case is when n is a nonnegative integer. At the regular singular point x = 1, the
indicial equation is r2 = 0, making the exponents at x = 1 equal to 0, 0. For simplicity using Frobenius
series, translate x = 1 to the origin by x = u+ 1. The equivalent DE is

u(u+ 2) y′′(u) + 2(u+ 1) y′(u)− n(n+ 1) y(u) = 0.
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The regular singular point u = 0 corresponds to x = 1 and has the same exponents, both 0. The Frobenius

series is

∞∑
k=0

aku
k, and substitution of the series into the DE yields

∞∑
k=0

[
(k + n+ 1)(k − n)ak + 2(k + 1)2ak+1

]
uk = 0.

Equating coefficients leads to the recurrence relation

ak+1 =
−(k + n+ 1)(k − n)

2(k + 1)2
ak,

which gives

ak =
(−1)k(n+ 1)k(−n)k

2k(k!)2
a0.

The the (·)k notation represents the factorial function and is defined by (z)k = z(z + 1) · · · (z + k − 1) =
Γ(z + k)/Γ(z). The Frobenius series solution to Legendre’s DE is, for a0 = 1,

y1(x) = 1 +
∞∑
k=1

(−n)k(n+ 1)k
(1)kk!

(
1− x

2

)k
.

Note that the series terminates if n is a nonnegative integer; the resulting polynomial is denoted Pn(x), and
is the Legendre polynomial of degree n. Also note that Pn(1) = 1 for all nonnegative integers n.

Exercise 4.1.1. Fill in all the details and verify all the claims in Example 4.1.1. Get comfortable dealing
with the factorial function.

Example 4.1.2. Bessel’s differential equation is

x2 y′′(x) + x y′(x) + (x2 − ν2) y(x) = 0.

The Frobenius series solution turns out to be

y1(x) =
∞∑
k=0

(−1)kx2k+ν

22kk!(1 + ν)k
a0.

If we let a0 =
1

2νΓ(ν + 1)
, we get the “standard” solution to Bessel’s DE, the Bessel funtion of the first kind

of order ν, denoted by Jν(x):

Jν(x) =
(x/2)ν

Γ(ν + 1)

∞∑
k=0

1
k!(1 + ν)k

(
−x2

4

)k
.

Exercise 4.1.2. For Bessel’s DE, show that x = 0 is a regular singular point with exponents ±ν, and fill
in the details in the derivation of the formula for Jν(x).

4.2. Equations of Fuchsian Type

Consider the differential equation

y′′(z) + p(z) y′(z) + q(z) y(z) = 0. (4.2.1)

We call (4.2.1) an equation of Fuchsian type if every singular point is a regular singular point.
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Lemma 4.2.1. If (4.2.1) is of Fuchsian type, then the number of singular points of (4.2.1) is finite.

Proof. At each singular point, either p or q has a pole. Suppose there are infinitely many singular points.
Then either p or q has infinitely many poles. These poles have a limit point (possibly∞) which is an essential
singularity of p or q. But such an essential singularity corresponds to an irregular singular point of (4.2.1),
contradicting the assumption that (4.2.1) is of Fuchsian type. ♠

Suppose (4.2.1) is of Fuchsian type and has exactly m+ 1 distinct singular points, where m ≥ 2. Denote the
singularities by z = zk, k = 1, . . . ,m and z =∞. Then p can have no singularities in the finite plane
except poles of order one at the zks. So,

p(z) =
p1(z)

(z − z1)(z − z2) · · · (z − zm)
,

where p1 is a polynomial. Also, q can have no singularities except poles of order ≤ two at the zks:

q(z) =
q1(z)

(z − z1)2(z − z2)2 · · · (z − zm)2
.

The maximum degree of the polynomials p1 and q1 can be determined using the regular singular point at
∞. Let z = 1/t, giving

d2y

dt2
+

1
t

[
2−

p1(1
t )

t(1
t − z1) · · · (1

t − zm)

]
dy

dt
+

1
t2

[
q1(1

t )
t2(1

t − z1)2 · · · (1
t − zm)2

]
y = 0. (4.2.2)

In order for z =∞, or t = 0, to be a regular singular point, the functions in the brackets in (4.2.2) must be
analytic at t = 0. This means degree(p1) ≤ m − 1 and degree(q1) ≤ 2m − 2. Thus we have the following
theorem.

Theorem 4.2.1. If equation (4.2.1) is of Fuchsian type and has exactly m + 1 distinct singular points,
z = zk, k = 1, . . . ,m and z =∞, then (4.2.1) can be written

y′′(z) +
T(m−1)(z)
ψ(z)

y′(z) +
T(2m−2)(z)
ψ2(z)

y(z) = 0,

where ψ(z) =
m∏
k=1

(z − zk) and T(j)(z) is a polynomial of degree at most j in z.

Corollary 4.2.1. There exist constants Ak, k = 1, 2, . . . ,m such that p(z) =
m∑
k=1

Ak
z − zk

.

Corollary 4.2.2. There exist constants Bk and Ck, k = 1, 2, . . . ,m, such that

q(z) =
m∑
k=1

(
Bk

(z − zk)2
+

Ck
z − zk

)
, and

m∑
k=1

Ck = 0.

Exercise 4.2.1. Prove both the above corollaries.

Equation (4.2.1) thus can be written in the form

y′′(z) +
m∑
k=1

Ak
z − zk

y′(z) +
m∑
k=1

(
Bk

(z − zk)2
+

Ck
z − zk

)
y(z) = 0, (4.2.3)
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where
m∑
k=1

Ck = 0.

Denote the exponents at the singular point zk by α1,k and α2,k, and the exponents at ∞ by α1,∞ and α2,∞.
Since the indicial equation at zk is r2 + (Ak − 1)r +Bk = 0, we get

α1,k + α2,k = 1−Ak and α1,kα2,k = Bk.

For the singularity at ∞, we get

α1,∞ + α2,∞ = −1 +
m∑
k=1

Ak and α1,∞α2,∞ =
m∑
k=1

(Bk + Ckzk) .

Thus, the sum of all the exponents for all the singular points is

α1,∞ + α2,∞ +
m∑
k=1

(α1,k + α2,k) = m− 1.

This number depends only on the number of singularities (and the order of the equation), and is the Fuchsian
invariant for the second order DE of Fuchsian type. For the Fuchsian DE of order n, the Fuchsian invariant
is (m− 1)n(n− 1)/2.

Example 4.2.1. A second order Fuchsian DE with m = 2 contains five arbitrary parameters, A1, A2, B1,
B2, and C1 = −C2. Also, there are six exponents, with sum one (Fuchsian invariant), such that

A1 = 1− α1,1 − α2,1

A2 = 1− α1,2 − α2,2

B1 = α1,1α2,1

B2 = α1,2α2,2

B1 +B2 + C1z1 + C2z2 = α1,∞α2,∞

C1 + C2 = 0

These relationships allow us to write (4.2.3) in terms of the exponents.

y′′(z)+
[

1− α1,1 − α2,1

z − z1
+

1− α1,2 − α2,2

z − z2

]
y′(z)+[

α1,1α2,1

(z − z1)2
+

α1,2α2,2

(z − z2)2
+
α1,∞α2,∞ − α1,1,α2,1 − α1,2α2,2

(z − z1)(z − z2)

]
y(z) = 0. (4.2.4)

4.3. The Riemann-Papperitz Equation

Now assume (4.2.1) has three regular singular points, all finite, and that∞ is an ordinary point. Denote the
singularities by a, b, and c and denote the corresponding exponents by a′ and a′′, b′ and b′′, and c′ and c′′.
Equation (4.2.1) then has the form

y′′(z) +
p2(z)

(z − a)(z − b)(z − c) y
′(z) +

q2(z)
(z − a)2(z − b)2(z − c)2

y(z) = 0. (4.3.1)

Exercise 4.3.1. Use the fact that ∞ is an ordinary point of (4.3.1) to show that: (i) p2 is a polynomial of
degree two with the coefficient of z2 equal to 2; (ii) q2 is a polynomial of degree ≤ 2.
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From Exercise 4.3.1, we see that there exist constants A1, A2, A3, B1, B2, and B3 such that
p2(z)

(z − a)(z − b)(z − c) =
A1

z − a +
A2

z − b +
A3

z − c ,

q2(z)
(z − a)2(z − b)2(z − c)2

=
B1

(z − a)2
+

B2

(z − b)2
+

B3

(z − c)2

,

and A1 +A2 +A3 = 2. The form of the DE is now

y′′(z) +
[
A1

z − a +
A2

z − b +
A3

z − c

]
y′(z) +

[
B1

(z − a)2
+

B2

(z − b)2
+

B3

(z − c)2

]
y(z)

(z − a)(z − b)(z − c) = 0.

(4.3.2)

Exercise 4.3.2. Using the indicial equations for (4.3.2), show that

a′ + a′′ = 1−A1

b′ + b′′ = 1−A2

c′ + c′′ = 1−A3

a′a′′ =
B1

(a− b)(a− c)

b′b′′ =
B2

(b− a)(b− c)

c′c′′ =
B3

(c− a)(c− b)
a′ + a′′ + b′ + b′′ + c′ + c′′ = 1

So, in terms of the exponents, (4.3.2) becomes

y′′(z)+
[

1− a′ − a′′
z − a +

1− b′ − b′′
z − b +

1− c′ − c′′
z − c

]
y′(z)+[

a′a′′(a− b)(a− c)
z − a +

b′b′′(b− a)(b− c)
z − b +

c′c′′(c− a)(c− b)
z − c

]
y(z)

(z − a)(z − b)(z − c) = 0.(4.3.3)

This is the Riemann-Papperitz equation. If y is a solution of the Riemann-Papperitz equation, we use the
Riemann P -function notation

y = P

 a b c
a′ b′ c′ z
a′′ b′′ c′′

 .

The right side is simply a symbol used to explicitly exhibit the singularities and their exponents. If c is
replaced by ∞ then y satisfies the DE with c→∞. It can be shown that the results agree with what we got
in the last section.

There are two useful properties of the Riemann P-function we will need later.

Theorem 4.3.1. If a linear fractional transformation of the form

z =
At+B

Ct+D
=

(a− b)(a− c)(c1 − b1)(t− a1)
(a− b)(a1 − c1)(t− b1) + (a− c)(b1 − a1)(t− c1)

+ a

transforms a, b, and c into a1, b1, and c1 respectively, then

P

 a b c
a′ b′ c′ z
a′′ b′′ c′′

 = P

 a1 b1 c1
a′ b′ c′ t
a′′ b′′ c′′

 .

This can be verified by direct, but tedious, substitution.

47



Theorem 4.3.2.

P

 a b c
a′ b′ c′ z
a′′ b′′ c′′

 =
(
z − a
z − b

)k
P

 a b c
a′ − k b′ + k c′ z
a′′ − k b′′ + k c′′

 .

Outline of Proof. If w(z) satisfies (4.3.3), let w(z) =
(
z − a
z − b

)k
w1(z). We will show that w1 satisfies an

equation of the form (4.3.3), but with the exponent a′ replaced by a′ − k. Corresponding to the regular
singular point z = a, there is a Frobenius series solution corresponding to the exponent a′:

w =
∞∑
n=0

an (z − a)n+a′ .

Thus,

w1(z) = (z − b)k
∞∑
n=0

an (z − a)n+a′−k.

But (z − b)k is analytic at z = a, and has a series expansion around z = a

(z − b)k = (a− b)k +
∞∑
n=1

bn (z − a)n,

so we can write

w1(z) =
∞∑
n=0

cn (z − a)n+a′−k

where c0 6= 0. Thus, the a′ in the symbol for the Riemann P-function for w becomes a′ − k in the symbol
for w1. The other three exponents are similar. ♠

Exercise 4.3.3. The transformation y(z) = f(z) v(z) applied to (4.2.1) yields

v′′ +
(

2
f ′

f
+ p

)
v′ +

(
f ′′

f
+ p

f ′

f
+ q

)
v = 0.

Also,
f ′

f
= (log f)′ and

f ′′

f
=
(
f ′

f

)′
+
(
f ′

f

)2

. Now apply w(z) =
(
z − a
z − b

)k
w1(z) to (4.3.3). Show that

the indicial equation at z = a is transformed from

r2 − (a′ + a′′) r + a′a′′ = 0

into
r2 − (a′ + a′′ − 2k) r + k2 − (a′ + a′′) k + a′a′′ = 0.

Based on this work, prove Theorem 4.3.2.

4.4. The Hypergeometric Equation

Theorems 4.3.1 and 4.3.2 can be used to reduce (4.3.3) to a simple canonical form. Let w(z) be a solution

of (4.3.3) as before and let w(z) =
(
z − a
z − b

)a′
w1(z). Then by Theorem 4.3.2, w1 is a solution of the DE

corresponding to

P

 a b c
0 b′ + a′ c′ z

a′′ − a′ b′′ + a′ c′′


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Another zero exponent can be obtained by letting w1(z) =
(
z − b
z − c

)b′+a′
w2(z) so that w2 is represented by

P

 a b c
0 0 c′ + b′ + a′ z

a′′ − a′ b′′ − b′ c′′ + b′ + a′


Note that the sum of the six exponents is still 1. Now let α = a′+b′+c′, β = a′+b′+c′′, and γ = 1−a′′+a′.
The Riemann P-function representing w2 is now

P

 a b c
0 0 α z

1− γ γ − α− β β

 .

Penultimately, use a linear fractional transformation to map a, b, and c to 0, 1, and ∞ respectively:

t =
(b− c)(z − a)
(b− a)(z − c) .

Finally, rename t to be z. We have the Riemann P-function P

 0 1 ∞
0 0 α z

1− γ γ − α− β β

, which corre-

sponds to the hypergeometric DE:

z(1− z)y′′(z) + [γ − (α+ β + 1)z] y′(z)− αβ y(z) = 0 (4.4.1)

Exercise 4.4.1. Fill in the details in the derivation of (4.4.1).

Since (4.4.1) has a regular singular point at z = 0 with one exponent 0, one solution has the form

y =
∞∑
k=0

ak z
k

and the usual series manipulations lead to the recurrence relation

ak =
(k − 1 + α)(k − 1 + β)

k(k − 1 + γ)
ak−1.

If we set a0 = 1, we get the hypergeometric function F (α, β; γ; z) as a solution.

F (α, β; γ; z) =
∞∑
k=0

(α)k(β)k
(γ)k k!

zk,

provided γ 6= 0,−1,−2, . . .. If we also assume γ 6= 1, 2, 3, . . . the solution around z = 0 corresponding to the
other exponent, 1− γ, is

y2(z) =
∞∑
k=0

(1− γ + α)k(1− γ + β)k
(2− γ)k k!

zk+1−γ = z1−γF (1− γ + α, 1− γ + β; 2− γ; z)

Many known functions can be expressed in terms of the hypergeometric function. Here are some examples.
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Example 4.4.1. Polynomials. If either α or β is zero or a negative integer the series terminates.

F (α, 0; γ; z) = 1, F (α,−n; γ; z) =
n∑
k=0

(α)k(−n)k
(γ)k k!

zk.

Example 4.4.2. Logarithms. z F (1, 1; 2;−z) = log (1 + z) and 2z F (1
2 , 1; 3

2 ; z2) = log 1+z
1−z .

Example 4.4.3. Inverse trigonometric functions.
z F (1

2 ,
1
2 ; 3

2 ; z2) = arcsin z and z F (1
2 , 1; 3

2 ;−z2) = arctan z.

Example 4.4.4. Rational functions and/or binomial expansions. F (α, β;β; z) = 1
(1−z)α = (1 − z)−α.

Example 4.4.5. Complete elliptic integrals. In the following, z is the modulus, not the parameter.
K(z) = π

2 F (1
2 ,

1
2 ; 1; z2), and E(z) = π

2 F (− 1
2 ,

1
2 ; 1; z2).

(See Math Mag. 68(3), June 1995, p.216 for an article on the rate of convergence of these hypergeometric
functions.)

Exercises 4.4.2-6. Verify the claims in Examples 4.4.1-5.

Example 4.4.6. Legendre polynomials. For n a positive integer, Pn(z) = F (−n, n + 1; 1; 1−z
2 ). This can

be seen from the form of the series solution (see Example 4.1.1)), or can be derived directly from Legendre’s
DE, (1− z2)y′′(z)− 2z y′(z) + n(n+ 1) y(z) = 0, n a positive integer. The regular singular points are at ±1
and ∞, and the transformation t = 1−z

2 takes 1→ 0, −1→ 1, and ∞→∞. The DE becomes

t(1− t)y′′(t) + (1− 2t)y′(t) + n(n+ 1)y(t) = 0,

which can be seen to be the hypergeometric DE in t with α = −n, β = n+ 1, and γ = 1.

Exercise 4.4.7. F (α, β; γ; z) = F (β, α; γ; z).

Exercise 4.4.8.
d

dz
F (α, β; γ; z) =

αβ

γ
F (α+ 1, β + 1; γ + 1; z).

Hypergeometric functions in which α, β, or γ are replaced by α± 1, β ± 1, or γ ± 1 are called contiguous to
F (α, β; γ; z). Gauss proved that F (α, β; γ; z) and any two of its contiguous functions are related by a linear
relation with coefficients linear functions of z. The following exercises illustrate two such relations. There
are many more.

Exercise 4.4.9. (γ − α− β)F (α, β; γ; z) + α(1 − z)F (α+ 1, β; γ; z)− (γ − β)F (α, β − 1; γ; z).

Exercise 4.4.10. F (α, β + 1; γ; z)− F (α, β; γ; z) = α z
γ F (α+ 1, β + 1; γ + 1; z) = 0.

The infinite product result in Section 2.5 can be used to evaluate F (α, β; γ; 1) in terms of gamma functions.
Details can be found in Whittaker and Watson, pp. 281-2. Limits are necessary because z = 1 is a singular
point of the hypergeometric differential equation.

F (α, β; γ; 1) =
Γ(γ) Γ(γ − α− β)
Γ(γ − α) Γ(γ − β)

.
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4.5. Confluence of Singularities

Many differential equations of interest have an irregular singular point. The harmonic oscillator equation,
y′′ + y = 0, has an irregular singularity at ∞, for example. The results for DEs of Fuchsian type can be
used to study such equations under the right circumstances. We may let two singularities come together
and become an irregular singular point provided: (1) at least one of the corresponding exponents approaches
∞ and (2) the DE has a limiting form. This process, when posible, is called confluence. In this section we
describe a general method to transform a Fuchsian DE by confluence into a DE with an irregular singularity.

Suppose we have a Fuchsian DE with singularities at 0, c, and ∞ and that the exponents at z = c and
z =∞ depend on c. In order for the DE to have a limiting form as c→∞, it is necessary to require that the
exponents at c and ∞ are linear functions of c. This will be assumed without proof. Thus, we can represent
a solution of the DE by the Weierstrass P-function

P

 0 c ∞
α1,1 α1,2 + c β1,2 α1,∞ + c β1,∞ z
α2,1 α2,2 + c β2,2 α2,∞ + c β2,∞

 .

From (4.2.4) we get

y′′(z)+
[

1− α1,1 − α2,1

z
+

1− α1,2 − α2,2 − c(β1,2 + β2,2

z − c

]
y′(z)+[

α1,1α2,1

z2
+
α1,2α2,2 + c(α1,2β2,2 + α2,2β1,2) + c2β1,2β2,2

(z − c)2

]
y(z)+[

α1,∞α2,∞ − α1,1,α2,1 − α1,2α2,2

z(z − c)

]
y(z)+ (4.5.1)[

c(α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2) + c2(β1,∞β2,∞ − β1,2β2,2)
z(z − c)

]
y(z) = 0.

If a limiting form is to exist, we must have β1,∞β2,∞− β1,2β2,2 = 0 to avoid the last term in (4.5.1) blowing
up. The Fuchsian invariant has value 1, so

α1,1 + α2,1 + α1,2 + α2,2 + α1,∞ + α2,∞ + c(β1,2 + β2,2 + β1,∞ + β2,∞) = 1.

This equation must hold for all c and for αs and βs independent of c, so

β1,2 + β2,2 + β1,∞ + β2,∞ = 0
α1,1 + α2,1 + α1,2 + α2,2 + α1,∞ + α2,∞ = 1.

Now let c→∞, giving

y′′(z)+
[

1− α1,1 − α2,1

z
+ β1,2 + β2,2

]
y′(z)+[

α1,1α2,1

z2
+ β1,2β2,2 −

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2

z

]
y(z) = 0. (4.5.1)

Exercise 4.5.1. Verify that equation (4.5.1) has an irregular singularity at ∞.

Example 4.5.1. Confluence can be used to obtain Bessel’s DE of order n. This DE has a regular singular
point at z = 0 and an irregular singular point at z = ∞. The exponents at 0 are ±n, so α1,1 = n and
α2,1 = −n, making (4.5.1)

y′′(z)+
[

1
z

+ β1,2 + β2,2

]
y′(z)+[

−n2

z2
+ β1,2β2,2 −

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2

z

]
y(z) = 0.
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We want to get Bessel’s DE,

y′′(z) +
1
z
y′(z) +

(
1− n2

z2

)
y(z) = 0,

so, including the condition for the existence of a limiting form and the Fuchsian invariant, we get the following
system of equations for the parameters.

β1,2 + β2,2 = 0
β1,2β2,2 = 1

α1,∞β2,∞ + α2,∞β1,∞ − α1,2β2,2 − α2,2β1,2 = 0
β1,∞β2,infty − β1,2β2,2 = 0
β1,2 + β2,2 + β1,∞ + β2,∞ = 0
α1,2 + α2,2 + α1,∞ + α2,∞ = 1

Since there are six equations in eight unknowns, any solution will contain two undetermined parameters.
One such solution is

β1,2 = i, β2,2 = −i, β1,∞ = i, β2,∞ = −i, α1,∞ = 1
2 − α2,2, α2,∞ = 1

2 − α1,2.
This shows that if we let c→∞ in the DE defined by

P

 0 c ∞
n α1,2 + ic 1

2 − α2,2 + ic z
−n α2,2 − ic 1

2 − α1,2 − ic

 ,

the result is Bessel’s DE.

Exercise 4.5.2. Fill in the details in Example 4.5.1.

The point of this section is that by means of the process of confluence, known results about the Fuchsian
DE can suggest new results or avenues of study for the DE with an irregular singularity. The example
involving Bessel’s equation is to be taken as an illustration of the process. Actually, much more is known
about Bessel’s DE than the Fuchsian DE.

Exercise 4.5.3. Show that the confluent equation obtained by letting c→∞ in the DE defined by

P

 0 c ∞
1
2 + m c− k −c z
1
2 −m k 0


is
d2u

dz2
+
du

dz
+
(
k

z
+

1
4 −m2

z2

)
u = 0. Then let u = e−z/2Wk,m(z) to get Whittaker’s equation for Wk,m:

d2W

dz2
+
[
− 1

4
+
k

z
+

1
4 −m2

z2

]
W = 0.

Verify that Whittaker’s equation has a regular singular point at 0 and an irregular singular point at ∞.
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4.6. Generalized Hypergeometric Functions

A little time spent studying the series form of the basic hypergeometric function,

F (α, β; γ; z) =
∞∑
k=0

(α)k(β)k
(γ)k

zk

k!
,

will suggest the question, “Why be restricted to just α, β, and γ for the factorial functions? Why not allow
an arbitrary number of factorials in both numerator and denominator?” (OK, that’s two questions, but, as
you may know, there are three kinds of mathematicians: those who can count and those who cannot.) Thus
we are led to consider the generalized hypergeometric functions, denoted pFq(α1, . . . , αp; γ1, . . . , γq; z) and
defined by

pFq(α1, . . . , αp; γ1, . . . , γq; z) =
∞∑
k=0

∏p
i=1(αi)k∏q
j=1(γj)k

zk

k!
.

Exercise 4.6.1. If p ≤ q, the series for pFq converges for all z.

Exercise 4.6.2. If p = q + 1, the series converges for |z| < 1 and, unless it terminates, diverges for |z| ≥ 1.

Exercise 4.6.3. If p > q + 1, the series, unless it terminates, diverges for z 6= 0.

Either p or q or both may be zero, and if this occurs, the absence of parameters will be denoted by a dash,
−, in the appropriate position.

Example 4.6.1. 0F0(−;−; z) =
∞∑
k=0

zk

k!
= ez.

Example 4.6.2. 1F0(α;−; z) = F (α, β;β; z) = (1− z)−α.

Example 4.6.3. 0F1(−; γ; z) =
∞∑
k=0

zk

(γ)kk!
, and from this we get Jν(z) = (z/2)ν

Γ(ν+1) 0F1(−; ν + 1;− z2

4 ).

Since the hypergeometric function came from the hypergeometric DE, the generalized hypergeometric func-
tions should also satisfy appropriate DEs. Let the differential operator θ = z d

dz . In terms of θ, the
hypergeometric DE is

[θ(θ + γ − 1)− z(θ + α)(θ + β)] y = 0.

Now if

y(z) = pFq(z) =
∞∑
k=0

(α1)k · · · (αp)k
(γ1)k · · · (γq)k

zk

k!
,

and since θ zk = k zk, we get

θ

q∏
j=1

(θ + γj − 1) y =
∞∑
k=1

k
∏q
j=1(k + γj − 1)

∏p
i=1(αi)k∏q

j=1(γj)k
zk

k!
=
∞∑
k=1

∏p
i=1(αi)k∏q

j=1(γj)k−1

zk

(k − 1)!
.

Shifting the index gives

θ

q∏
j=1

(θ + γj − 1) y =
∞∑
k=0

∏p
i=1(αi)k+1∏q
j=1(γj)k

zk+1

k!
= z

∞∑
k=0

∏p
i=1(αi + k)

∏p
i=1(αi)k∏q

j=1(γj)k
zk

k!
= z

p∏
i=1

(θ + αi) y.
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Thus, if p ≤ q + 1, we see that y = pFq satisfiesθ q∏
j=1

(θ + γj − 1)− z
p∏
i=1

(θ + αi)

 y = 0.

This DE is of order q + 1 and, if no γj is a positive integer and no two γj ’s differ by an integer, the general
solution is

y =
q∑

m=0

cm ym

where, for m = 1, 2, . . . , q,

y0 = pFq(α1, . . . , αp; γ1, . . . , γq; z)

ym = z1−γm
pFq(α1 − γm + 1, . . . , αp − γm + 1;

γ1 − γm + 1, . . . , γm−1 − γm + 1, 2− γm, γm+1 − γm + 1, . . . , γq − γm + 1; z)

Exercise 4.6.4. Find the DE satisfied by 3F2(2, 2, 2; 5
2 , 4; z). Also find the general solution of this DE.

Exercise 4.6.5. Show that if y1 and y2 are linearly independent solutions of

y′′(z) + p(z) y′(z) + q(z) y(z) = 0

then three linearly independent solutions of

w′′′(z) + 3p(z)w′′(z) +
(
2p2(z) + p′(z) + 4q(z)

)
w′(z) + (4p(z)q(z) + 2q′(z)) w(z) = 0

are y2
1(z), y1(z)y2(z), and y2

2(z).

Exercise 4.6.6. Show that 3F2(2, 2, 2; 5
2 , 4; z) =

(
F (1, 1; 5

2 ; z)
)2

. [Hint: Use Exercises 4.6.4 and 4.6.5.]
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Chapter 5. Orthogonal Functions

5.1. Generating Functions

Consider a function f of two variables, (x, t), and its formal power series expansion in the variable t:

f(x, t) =
∞∑
k=0

gk(x) tk.

The coefficients in this series are, in general, functions of x, and we can think of them as having been

“generated” by the function f . In fact, gk(x) =
1
k!
∂kf

∂tk
(x, 0), though there may be better ways to compute

them. If this idea is extended slightly, we get the following definition:

Definition 5.1.1. The function F (x, t) is a generating function for the sequence {gk(x)} if there exists a
sequence of constants {ck} such that

F (x, t) =
∞∑
k=0

ckgk(x) tk.

It is not uncommon for all the cks to be one. One of the principal problems involving generating functions
is determining a generating function for a given set or sequence of polynomials. Especially desirable is a
general theory which can be used to get generating functions. Unfortunately, no such theory has yet been
developed, so we must be content with results for special cases found using manipulative dexterity.

Example 5.1.1. One special case is when the coefficients are successive powers of the same function. Let
{gk(x)} = {(f(x))k}. Then the generating function can be found using the formula for the sum of a geometric
series.

F (x, t) =
∞∑
k=0

(f(x))k tk =
1

1− t f(x)

provided |f(x)| < 1.

Exercise 5.1.1. Find the generating function for the sequence {k (f(x))k}.

Many sets of elementary and special functions have known generating functions. Here are some examples.

Example 5.1.2. The Bernoulli functions. Let y(x, t) =
∞∑
k=0

Bk(x) tk. Termwise differentiation with respect

to x and properties of the Bernoulli functions (section 1.3) yields yx(x, t) = t y(x, t). Thus,

∂

∂x

[
e−xty(x, t)

]
= e−xt [yx(x, t)− t y(x, t)] = 0,

and so for each t there is a function C(t) such that y(x, t) = C(t)ext, and we have

C(t)ext =
∞∑
k=0

Bk(x) tk. (5.1.1)

Integration of (5.1.1) over the interval [0, 1] and properties of the Bernoulli functions give

C(t) =
t

et − 1
.
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Thus, the generating function for the Bernoulli functions is y(x, t) =
text

et − 1
.

Exercise 5.1.2. Fill in the details in Example 5.1.2.

Example 5.1.3. Legendre polynomials: (1 − 2xt+ t2)−
1
2 =

∞∑
k=0

Pk(x)tk.

Exercise 5.1.3. Use Taylor’s theorem to verify the first three coefficients in the generating function relation
for the Legendre polynomials.

Example 5.1.4. Bessel functions: exp
[

1
2
z(t− 1

t
)
]

=
∞∑

k=−∞
Jk(z)tk.

Example 5.1.5. Hermite polynomials. Denote the Hermite polynomial of degree n by Hn(x). Then

exp
(
2xt− t2

)
=
∞∑
n=0

Hn(x)
n!

tn.

Exercise 5.1.4. Find the first four Hermite polynomials.

Exercise 5.1.5. Prove the expansions

et
2

cos 2xt =
∞∑
n=0

(−1)nH2n(x)
(2n)!

t2n

et
2

sin 2xt =
∞∑
n=0

(−1)nH2n+1(x)
(2n+ 1)!

t2n+1

for |t| < ∞. These expressions can be thought of as generating functions for the even and odd Hermite
polynomials.

The generating functions for both the Legendre and the Hermite polynomials are functions of the form
G(2xt − t2). The following theorem is representative of theorems which give properties common to all sets
of functions having generating functions of this form.

Theorem 5.1.1. If G(2xt− t2) =
∞∑
n=0

gn(x) tn, then g′0(x) = 0 and, for n ≥ 1, the gns satisfy the differential-

difference equation
x g′n(x) − n gn(x) = g′n−1(x).

Proof. Let F (x, t) = G(2xt− t2) =
∞∑
n=0

gn(x) tn. Then F satisfies the PDE (x − t) ∂F
∂x
− t ∂F

∂t
= 0. In

terms of the series, this PDE is

∞∑
n=0

x g′n(x) tn −
∞∑
n=0

n gn(x) tn =
∞∑
n=1

g′n−1(x) tn.

Equating coefficients gives the desired result. ♠

56



Exercise 5.1.6. In A&S, pages 783-4, a number of generating functions are given as functions of R =√
1− 2xt+ t2. Formulate and prove the equivalent of Theorem 5.1.1 using R in place of 2xt− t2.

5.2. Orthogonality

Consider the DE
a0(x) y′′ + a1(x) y′ + [a2(x) + λ] y = 0.

Multiply by the “integrtating factor” p(x) = exp a1(x)
a0(x) dx, let q(x) = a2(x)

a0(x) p(x), and r(x) = p(x)
a0(x) , to get the

DE into the form
[p(x) y′]′ + [q(x) + λ r(x)] y = 0. (5.2.1)

Equation (5.2.1) is said to be in Sturm-Liouville form and if appropriate boundary conditions are specified
on an interval we have a Sturm-Liouville problem. Values of λ for which a Sturm-Liouville problem (SLP)
has nontrivial solutions are called eigenvalues of the SLP and the corresponding solutions are called eigen-
functions. These ideas are studied in detail in courses on partial differential equations and boundary value
problems where the SLP arises naturally in the solution of PDEs with boundary conditions. The following
theorem, stated here rather vaguely, is proved in such courses.

Theorem 5.2.1. Under appropriate conditions, if ym and yn are eigenfunctions corresponding to distinct
eigenvalues of the SLP associated with (5.2.1) on the interval [a, b], then

∫ b

a

r(x)ym(x)yn(x) dx = 0. (5.2.2)

When equation (5.2.2) holds, we say that ym and yn are orthogonal with respect to the weight function r(x).
This equation can, in fact, be taken as the definition of orthogonality.

Exercise 5.2.1. What do you call a tornado at the Kentucky Derby?

Example 5.2.1 (Legendre). Legendre’s DE, as we have seen, is (1 − x2) y′′ − 2 x y′ + n(n+ 1) y = 0. In
Sturm-Liouville form, this becomes

[
(1− x2) y′

]′
+ n(n+ 1) y = 0.

Here, p(x) = 1−x2, q(x) ≡ 0, , r(x) ≡ 1, and λ = n(n+1). Since x = ±1 are regular singular points, we can be
sure solutions exist on the closed interval [−1, 1] only when the solutions are polynomials, so the eigenvalues
are n = 0, 1, 2, . . . and the eigenfunctions are the corresponding Legendre polynomials P0(x), P1(x), P2(x), . . ..
By Theorem 5.2.1 we have ∫ 1

−1

Pm(x)Pn(x) dx = 0

whenever m and n are distinct nonnegative integers.

The orthogonality integral is a generalization to functions of the dot product for vectors, and since the dot
product of a vector with itself is the square of the length of the vector, the integral in (5.2.2) with both
eigenfunctions the same can be interpreted as the “length” squared of the eigenfunction. Often, we want
this length to be one for all the eigenfunctions, in which case we say that the eigenfunctions are normalized.
Since the eigenfunctions are orthogonal by (5.2.2), if they are also normalized, we say they are orthonormal.
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Example 5.2.1 (continued). We now determine

∫ 1

−1

P 2
n(x) dx using the generating function.

(1− 2xt+ t2)−
1
2 =

∞∑
n=0

Pn(x) tn

(1− 2xt+ t2)−1 =

[ ∞∑
n=0

Pn(x) tn
]2

1
t

log
∣∣∣∣1 + t

1− t

∣∣∣∣ =
∞∑
n=0

t2n
∫ 1

−1

P 2
n(x) dx

2
(

1 +
t2

3
+
t4

5
+ · · ·+ t2n

2n+ 1
+ · · ·

)
=
∞∑
n=0

t2n
∫ 1

−1

P 2
n(x) dx.

Equating coefficients gives the normalizing constants for the Legendre polynomials:∫ 1

−1

P 2
n(x) dx =

2
2n+ 1

.

Exercise 5.2.2. Fill in the details in Example 5.2.1.

Example 5.2.2 (Bessel). Bessel’s DE of order n, (slightly modified - do you see how?) x2y′′ + x y′ +
(λ2x2 − n2) y = 0, written in Sturm-Liouville form is

[x y′]′ +
[
λ2x− n2

x

]
y = 0.

For the interval [0, b], the eigenvalues are λk = αk
b , where αk is the kth positive zero of Jn(x). The orthogo-

nality integral is, for m 6= k, ∫ b

0

xJn(λmx)Jn(λkx) dx = 0.

Note here that n is fixed, and the different eigenvalues and eigenfunctions are denoted by the subscripts on
λ or α.

For sets of polynomials, the following equivalent condition for orthogonality is often useful. We call a set of
polynomials simple if the set contains exactly one polynomial of each degree; unless stated otherwise, the
degree of a subscripted polynomial is equal to its subscript.

Theorem 5.2.2. If {φn(x)} is a simple set of real polynomials and r(x) > 0 on an interval (a, b), then
{φn(x)} is an orthogonal set with respect to the weight function r(x) if and only if for k = 0, 1, 2, . . . , n− 1,

∫ b

a

r(x)xk φn(x) dx = 0.

Outline of Proof. The proof is based first on the fact that any polynomial of degree m < n can be written
as a linear combination of powers of x from x0 through xm. Then the fact that xk can be expressed as a
linear combination of φ0(x) through φk(x) is used. Details are left to the student. ♠
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Exercise 5.2.3. Prove Theorem 5.2.2.

Exercise 5.2.4. Prove that if {φn(x)} is a simple set of real polynomials and r(x) > 0 on an inter-

val (a, b), then for every polynomial P of degree less than n,

∫ b

a

r(x)φn(x)P (x) dx = 0. Also prove that∫ b

a

r(x)xn φn(x) dx 6= 0.

The interesting part of a polynomial is near the zeros. After the last zero and before the first one, polynomials
are rather boring - they either go up, up, up, or down, down, down.

Theorem 5.2.3. If {φn(x)} is a simple set of real polynomials, orthogonal with respect to a weight function
r(x) > 0 on an interval (a, b), then, for each n, the zeros of φn are distinct and all lie in the interval (a, b).

Proof. For n > 0, by Theorem 5.2.2
∫ b

a

r(x)φn(x) dx = 0, so the integrand must change sign at least once

in (a, b), and since r(x) > 0, this means φn(x) changes sign in (a, b). Let {αk}sk=1 be the set of points where
φn(x) changes sign in (a, b). These are the zeros of φn of odd multiplicity, and since the degree of φn is n,
we know that s ≤ n. Form the polynomial

P (x) =
s∏

k=1

(x− αk).

Assume s < n. Then by Exercise 5.2.4, ∫ b

a

r(x)φn(x)P (x) dx = 0.

But all the zeros of φn(x)P (x) are of even multiplicity, so r(x)φn(x)P (x) cannot change sign in (a, b).
Hence, s < n is not possible, and we must have s = n. This means that φn has n roots of odd multiplicity
in (a, b). Since the degree of φn is n, each root is simple, and the theorem is proved. ♠

5.3. Series Expansions

An important application of orthogonal polynomials in physics and engineering is the expansion of a given
function in a series of the polynomials. For a simple set of polynomials, the powers of x in the usual series
representation are replaced by the polynomials of appropriate degree. Of course, the problem is to find the
coefficients in such a series expansion, and this is where orthogonality becomes quite useful.

Example 5.3.1. Let f be defined in the interval (−1, 1), and expand f(x) in a series of Legendre polyno-
mials. In other words, we want to determine the coefficients in

f(x) =
∞∑
n=0

cn Pn(x) (5.3.1)

so that equality holds for x ∈ (−1, 1). Proceeding formally, we multiply both sides by Pm(x) and integrate
from −1 to 1. ∫ 1

−1

f(x)Pm(x) dx =
∞∑
n=0

cn

∫ 1

−1

Pm(x)Pn(x) dx =
2

2m+ 1
cm,
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which implies that, for n = 0, 1, 2, . . .

cn = (n+
1
2

)
∫ 1

−1

f(x)Pn(x) dx. (5.3.2)

This procedure is neat, clean, and algorithmic, but we took some mathematical liberties which should at
least be acknowledged. In particular, how did we know that f(x) could be represented as in (5.3.1) in
the first place, and also, was it legitimate to interchange the operations of integration and summation?
Unless these points are cleared up, we have no guarantee, except faith, that (5.3.1) with coefficients given by
(5.3.2) converges and has sum f(x). Another concern is that even if we can be sure the procedure works for
Legendre polynomials, will a similar procedure be valid for a different set of simple orthogonal polynomials?
Fortunately, for a given set of orthogonal polynomials, there are conditions which do guarantee that equations
(5.3.1) and (5.3.2) or their equivalents are valid. Unfortunately, the conditions are different for different sets
of polynomials. Proofs get somewhat involved, and are omitted here, but interested readers may consult
Lebedev or Whittaker and Watson.

Theorem 5.3.1. If the real function f is piecewise smooth in the interval (−1, 1) and if

∫ 1

−1

f2(x) dx is finite,

then the Legendre series (5.3.1) with coefficients given by (5.3.2) converges to f(x) wherever f is continuous.
If x0 is a point of discontinuity, the series converges to the average of the right-hand and left-hand limits of
f(x) at x0.

Exercise 5.3.1. Expand f(x) = x2 in a series of Legendre polynomials.

Exercise 5.3.2. Expand f(x) =
{

0, −1 ≤ x < α
1, α < x ≤ 1 in a series of Legendre polynomials, and verify the

value at x = α.

Exercise 5.3.3. Express f(x) =
√

1−x
2 in a series of Legendre polynomials. Calculate the coefficients by

using the generating function.

It is possible to derive all properties of a set of orthogonal polynomials by starting with only the generating
function. The following series of exercises builds up some results about the Hermite polynomials defined in
Example 5.1.5.

Exercise 5.3.4. Show that the generating function F (x, t) for the Hermite polynomials satisfies ∂F
∂x −2t F =

0, and so H ′n(x) = 2nHn−1(x). Similarly, show that F (x, t) satisfies ∂F
∂t − 2(x− t)F = 0, and so

Hn+1(x) − 2xHn(x) + 2nHn−1(x) = 0. (5.3.3)

Exercise 5.3.5. Show that the Hermite polynomials satisfy the differential equation (Hermite’s DE)

y′′(x)− 2x y′(x) + 2n y(x) = 0.

Write Hermite’s DE in Sturm-Liouville form and determine the interval and the weight function for the
orthogonality of the Hermite polynomials.

Exercise 5.3.6. In this exercise, you will calculate

∫ ∞
−∞

e−x
2
H2
n(x) dx. Begin by replacing the index n in

(5.3.3) by n − 1 and multiply by Hn(x). Then from this equation subtract (5.3.3) multiplied by Hn−1(x).
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Work with this result to obtain∫ ∞
−∞

e−x
2
H2
n(x) dx = 2n

∫ ∞
−∞

e−x
2
H2
n−1(x) dx

for n = 2, 3, . . .. Repeated application of this reduction formula gives, for n = 2, 3, . . .,∫ ∞
−∞

e−x
2
H2
n(x) dx = 2n n!

√
π. (5.3.4)

Finally, show by direct calculation that (5.3.4) also holds for n = 0, 1.

There is a result for Hermite polynomials corresponding to Theorem 5.3.1, in which the integral required to

be finite is
∫ ∞
−∞

e−x
2
f2(x) dx.

Exercise 5.3.7. Expand f(x) = sgn(x) =
{
−1, x < 0
1, x > 0 in a series of Hermite polynomials.
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