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ABSTRACT:  Measurement of particles, whether grains on a microscope slide or image of a muck or stock pile, is 
two dimensional.  Principles of geometric probability and stereology can be used to reconstruct or unfold a three 
dimensional size distribution. This analytical solution or unfolding function can be calibrated with an empirical 
calibration function. 
 
1  INTRODUCTION 
 
The problem of determining the true block size 
distribution of blast fragmentation is one of measuring, 
on the surface of an assemblage of blocks, some two 
dimensional size parameter of the individual blocks and 
transforming it into a three dimensional block size 
distribution. 
 Similar problems exists in the fields of biology, 
metallography, and petrography, i.e. to obtain true 
particle size distributions of grains or bodies embedded 
in a three dimensional volume from measurements on a 
two dimensional section or cut.  For this type of 
problem, closed form solutions based on geometric 
probabilities exist, and are part of a discipline known as 
stereology (DeHoff and Rhines, 1968; Underwood, 
1970; Weibel, 1980; 1981; Russ, 1986).   
 
2 PRINCIPALS OF GEOMETRIC PROBABILITY 
 
2.1  Geometric Probability 
 
Geometric probabilities are probabilities of geometric 
occurrences.  An example of such would be to calculate 
the probability of a certain number of particles 
intersecting a random sampling plane within a given 
volume (DeHoff and Rhines, 1968). 
 
2.2  Stereology 
 
Stereology deals with a body of methods for the 
exploration of three-dimensional space when only two-
dimensional sections through solid bodies or their 
projections are available (Elias, 1967).  The aspects of 
stereology that are pertinent in the context of measuring 
fragmentation are those dealing with he size distributions 
of particles derived from the size distribution of their 
sections (Santalo, 1976).   

 In the notation of Santalo, the true size distribution of 
a body of particles is expressed as H(l) and the 
observed profile distribution on a planar cut or linear 
transect through that body is expressed as h(s), where l 
is some measure of the true particle size and s is a similar 
measure of observed particle profile size.  The task of a 
stereological solution is to infer H(l) given h(s).  This 
process in known in stereology as "unfolding" a 
distribution. 
 Unfolding is particularly difficult because the 
observed profile size of a particle is a function of both 
the true size of the particle, and of the nature of the 
intersection between the particle and the sampling line or 
plane.  Because it is impossible to determine whether a 
small profile is derived from a small particle sampled 
through its largest dimension, or from intersecting a small 
corner of a larger particle, it necessary to use geometric 
probabilities and make a-priori assumptions about H(l) 
to reconstruct it. 
 
2.3  Assumptions and Applicability of Stereology 
 
Stereological particle size relationships are generally 
applied to polydispersed systems of particles. 
 In general, the following assumptions are made: 
 1. The particles are randomly distributed in the 
volume. 
 2. If the particles have an anisotropic shape, (any 
shape other than spherical) they are randomly oriented. 
 3. The particles are convex. 
 4. The sampling plane (section) or sampling line is 
applied at a random orientation.  
 In addition, most closed form solutions make a-priori 
assumptions about the following: 
 1. The form of the size distribution of particles. 
 2. The shape of the particles.  
 Particle shapes are practically limited to simple 
spheres, cubes, spheroids, etc.  A simplification is often 



made in which particles are modeled by the closest 
matching regular geometric shape.  By far the most 
solutions are for spheres. 
 In the case of particles which are irregular, such as 
lumps resembling spheres, a measurement such as a 
diameter depends on which part of the particle is 
measured.  In this case an "equivalent" measure can be 
used.  An example is an area equivalent diameter dea, 
defined as the diameter of a circle of area equal to a 
measured cross sectional area, where: 
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and a is the area of a non-circular profile. 
 
2.4  Basic Stereological Relationships 
 
From Santalo (1976), if a volume of randomly oriented 
and randomly distributed particles, where the number of 
particles per unit volume is NV, is intersected by a 
sectioning plane, then the number of particles per unit 
area (NA) on the sectioning plane is given by: 
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where M is the mean curvature of the particles.  For 
spheres, M=2pd, where d is the mean diameter of 
the spheres.  The equation becomes: 
 

N dNA v=  

[3] 
 
 For cubes, M=3pa, where a is the mean edge 
length of the cubes.  The equation becomes: 
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 If the volume is intersected by a linear traverse, then 
the number of particles per unit length (NL) on the line 
section is given by: 
 

N
f
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where f is the surface area of the particles.  For spheres, 
f=4pr2, where r is the diameter of the spheres.  The 
equation becomes: 
 

N r NL V= π 2  

[6] 

 
For cubes, f=6a2, where a is the edge length of the 
cubes.  The equation becomes: 
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3
2

2  

[7] 
 
2.5  Some Basic Stereological Solutions 
 
The stereological solutions given in the literature in 
general try to reconstruct the true size distribution H(l) 
from the measured profile size distribution h(s).  They do 
so by assuming a particle shape (usually spherical), a 
distribution (usually normal), and try to solve for 
example, NA = f(NV) for discrete diameter or radius 
classes. 
 The number of classes (m) and the class widths (d) 
are the same for both NA and NV, however the classes 
are labeled j=1,m for NV and i=1,m for NA using the 
notation of Weibel (1980).  From geometric 
probabilities, it is known that a contribution to N V(j) can 
be made from NA(i), NA(i-1), ...,  NA(1)  where i=j. 
 The method of Saltykov (Weibel, 1980) solves a 
diagonal matrix kij representing the relative probabilities 
from the formulation: 
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 If the formulation is reversed, NV can be determined 
from NA: 
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where aij is the inverse of kij. 
 Similar solutions abound in the literature.  The 
method of Bach (1965) is identical, but allows for 
sampling planes of finite thickness. 
 A second method of Saltikov (1967) allows for 
particles of any shape, provided they are all of that 
shape, and assumes a log normal particle size 
distribution.  The methods of Spektor (1950), Lord and 
Willis (1951), and Cahn and Fullman (1956) use linear 
samples rather than plane areas, where chord lengths NL 
are measured. 
 
3  THE APPLICABILITY OF SECTIONING 
METHODS TO FRAGMENTATION 
 
In applying any of the above methods to the problem of 
reconstructing a block size distribution of a pile of blast 
fragmented rock from a measurement made on the 



surface of the pile, many of the underlying assumptions 
of these methods are violated.  
 One of the violated assumptions is that of a randomly 
oriented infinitely thin sampling plane.  Rather than a 
random plane, the surface of the rock pile will be 
sampled.  This sampling "plane" will be neither infinitely 
thin as required by most stereological solutions, nor of 
constant thickness as accommodated by at least one 
solution.  The effective thickness of the sampling surface 
will vary, as gaps between particles on the surface of the 
pile will reveal particles one or two layers deep into the 
pile.  The profiles that will be measured are not the 
intersection of the particles with a sampling plane, but 
rather a "projected" profile, where the largest dimension 
of the fragment, in the direction of projection, is 
revealed.  Furthermore, particles in the second or third 
layer into the pile will be partially obscured or 
overlapped by particles in the first layer.   
 Other assumptions that may be violated are: 
 1. The particles will most likely not be of a simple 
geometric shape, perhaps not even convex. 
 2. The size distribution of the particles will be largely 
unknown. 
 The assumptions of random distribution and 
orientation of particles may not be valid. 
 Two stereological solutions (Bach, 1965; Saltikov, 
1967) were tried out on crushed rock assemblages of 
known size distribution.  In general, the results were 
unsatisfactory relying too heavily on a-priori knowledge 
of actual parameters of the distribution (Maerz, 1990),.  
In response to this a new method of unfolding or 
reconstructing fragment size distributions was 
developed. 
 
4  A NEW METHOD OF UNFOLDING 
DISTRIBUTIONS 
 
For the purposes of analyzing fragmentation using image 
analysis, a quick and automated unfolding solution was 
required. The one that was finally adapted was based on 
equation [3], assuming that blocks are spherical. 
 A further assumption was made that if the observed 
distribution h(s) is divided into a number of classes of 
equal class width, equation [3]. could be applied to each 
class:  
 

( ) ( )N d
d

N dV A= 1
 

[10] 
where d is the mean diameter of each class. 
 To address the difference between sampling the 
surface of an assemblage of particles  and sampling an 

infinitely thin plane through the assemblage (as assumed 
for equation 2), a simple experiment was conducted. 
 An assemblage of several hundred 24 mm styrofoam 
balls was placed in a box, carefully avoid ing regular 
packing.  The surface of this assemblage was 
photographed.  The observed (measured) distribution of 
diameters (dea) in Figure 1 differed from the distribution 
of diameters expected from sampling an infinitely thin 
plane. 
 The observed distribution was bi-modal, where one 
mode represented non overlapped balls exposed at the 
surface of the assemblage, and the second mode 
represented balls which were partially overlapped in the 
second and third layer of the assemblage.  Although 
these results are not entirely relevant to multi-size and 
shape assemblages, the experiment showed that partially 
overlapped blocks not in the top layer of the pile can be 
measured.  
 
4.1  Calibration of the solution 
 
As a result of the above experiment, a calibration 
function f(d) was added to the unfolding equation 
(Equation 10): 
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[11] 
 
 For each diameter class (d) there is a different 
calibration factor f(d).  The set of calibration factors for 
all the classes is known as the calibration function.   
 With the addition of the calibration function, Equation 
11 becomes semi-empirical, because f is an empirically 
derived calibration function.  The significance of f is that 
it accounts for any systematic differences between the 
theoretical solution for a polydispersed system of 
spheres (Equation 10), and the actual solution for 
fragmentation.  The physical significance of f is to 
account for a combination of the following factors: 
 1. The effect of overlap of fragments.  The effect of 
different profile sizes because of varying degrees of 
overlap is similar to but not identical to the stereological 
situation where a sphere is sectioned at various places. 
 2. The effect of missing fines.  A proportion of the 
smaller sizes is typically missing in photographs of 
fragmentation by virtue of falling between and behind 
larger fragments, and because of insufficient  
photographic resolution.  This problem has been cited in 
typical stereological applications as well (DeHoff and 
Rhines, 1968).  
 



 

 
Figure 1. Top: Assemblage of 24 mm spheres;  
Bottom:  Expected distribution of diameters (circular 
area equivalent) from a true section, based on Monte 
Carlo simulation of geometric probabilities, and 
observed distribution of diameters (circular area 
equivalent), of the assemblage of spheres using 
image analysis. 
 
 
 3. The effect of the shape of the distribution.  
Although there is no theoretical a-priori assumption of 
distribution shape inherent in the method, different 
distributions have varying amount of fines, and 
consequently varying amounts of missing fines. 
 The calibration function can be determined by back 
calculation for any known size distribution.  Three 
populations of crushed rock samples were made up by 
sieving and mixing, one  negative exponential 
distribution, and two lognormal distributions (Figure 2).  
The rock was dumped into a box to simulate loading in 
the back of a haulage truck, photographed and 
processed using image analysis.  The calibration 
functions were back calculated using equation 11, for 
each of the distributions,  and are shown in Figure 3. 
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Figure 2. Top: Assemblage of crushed rock, dumped 
and photographed in a box.  Bottom: Distributions 
of crushed rock: 1) lognormal, mean of 8.75 mm and 
standard deviation 9.92 mm; 2) lognormal, mean of 
8.40 mm and standard deviation of 9.59 mm; 3) 
negative exponential distribution with an arithmetic 
mean of 6.19 mm. 
 
 
 For the most part the value of the calibration function 
is close to 1, i.e. it does not affect the outcome 
significantly.   The value deviates from 1 at the coarse 
and fine ends, for two different reasons.   
 At the coarse end (class #10) the value is affected by 
sampling error, since there are very coarse blocks, e.g. 
the presence of a single coarse block could be over 
representative, while the absence of the same block 
could be under representative.  At the fine end (class 
#1) the problem is simply missing fines, as the undersize 
blocks tend to fall between and behind the large blocks, 
or are not resolved by the image analysis system. 
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Figure 3. Calibration function derived for all three 
distributions.  For the most part f has a value close 
to 1, subject to random sampling errors. 

 
5  CONCLUSIONS 
 
Principles of geometric probability and stereology can 
be used to reconstruct or unfold a three dimensional size 
distribution, from two dimensional measurements on the 
surface of a rock assemblage. This analytical solution or 
unfolding function can be calibrated with an empirical 
calibration function. 
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