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Abstract

In geological engineering, discontinuities are typically analyzed by grouping (clustering) them into subsets based on
similar orientations, and then characterizing each set in terms of position, spacing, persistence, roughness and other
parameters. Multivariate analysis can be used to incorporate some of these other parameters directly into the cluster
analysis. The implementation of four methods of cluster analysis that consider orientation, spacing and roughness are
described here: nearest neighbor, k-means, fuzzy c-means, and vector quantization. The net result is a better grouping of
discontinuities, so that members of a subset might be more uniform in terms of mechanical or hydrological properties.
This paper presents the implementation of this analysis in a Windows"™ based program CYL that also serves as a
graphical visualization tool. () 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The behavior of a rock mass is largely governed by the
discontinuities within that rock mass. Understanding the
nature of the discontinuities (joints, fractures, bedding
planes, faults, and other breaks in the continuity of the
rock) is a fundamental requirement of discontinuous
rock mass characterization. With a few exceptions, the
engineering properties of most rock masses are influenced
to some extent or another by discontinuities. Whereas we
understand much about the mechanical properties of
intact solid rock, our understanding of discontinuous
rock is significantly less well developed. Among the most
important parameters describing the discontinuities are
orientation, spacing, persistence (length), roughness,
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aperture and infilling materials (Hudson and Priest,
1979; Priest, 1993; Hudson and Harrison, 1997, Mauldon
et al., 2001). Most of these can be measured from
oriented borehole core logs, or borehole video logs.
There are many papers on methods of discontinuity
analysis (Mahtab et al., 1972; Priest and Hudson, 1981;
Baecher, 1983; Mahtab and Yegulap, 1984; Kulatilake
and Wu, 1984; Maerz et al., 1990; Tsoutrelis et al., 1990;
Willis-Richards and Jupe, 1995; Hudson and Priest,
1979; Mauldon et al., 2001). Hammah and Curran
(1998, 2000) have used joint roughness in clustering joint
sets. Dershowitz et al. (1998) have used discontinuity
orientation and spacing to define structural domains.
However, most existing analytical methods tend to
underutilize the available data. Usually, discontinuity
parameters are analyzed individually, such as grouping
the discontinuities into subsets based on orientation
only. Consequently, the analyses suffer from the
inability to consider more than one parameter at a time.
As a result, discontinuities within the same subset may
have various mechanical or hydrological properties.

0098-3004/02/$ - see front matter (5 2002 Elsevier Science Ltd. All rights reserved.
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This paper presents an approach and an analytical
tool to characterize discontinuities from oriented bore-
hole data. It characterizes discontinuities into subsets
according to multiple parameters, such as orientation,
spacing, and roughness. During the discontinuity
clustering analysis, a number of variables can be treated
simultaneously, so that not only the variance but also
the covariance is considered. In this way the interactions
between variables are taken into account.

Four clustering methods, namely nearest neighbor, k-
means, fuzzy c-means and vector quantization methods
are adopted to cluster discontinuity data. Among them,
the first method uses hierarchical techniques, and the rest
use partitioning techniques. Hierarchical techniques per-
form successive merging or splitting of the data. One of
the primary features distinguishing hierarchical techniques
from other clustering algorithms is that the allocation of
an object to a cluster is irrevocable, that is, once an object
joins a cluster it is never removed. Unlike hierarchical
clustering techniques, methods that effect a partition of
the data do not require that the allocation of an object to
a cluster is irrevocable. That is, objects may be reallocated
if their initial assignments were indeed inaccurate.

2. Implementation of multivariate clustering analysis

2.1. Basic concepts

The attributes for discontinuity classification are
described in International Society of Rock Mechanics

Commission on Standardization of Laboratory and
Field Tests (1978), and shown in Fig. 1. These include:

(1) The discontinuity attitude (orientation).

(2) The distance between adjacent discontinuities
(spacing).

(3) The physical extent of discontinuities (persistence).

(4) The surface characteristics of the discontinuities
(roughness, strength, mineralization and altera-
tion).

(5) The filling matenal (filling or infilling).

For the purpose of this paper, Barton’s Joint Rough-
ness Coefficient (JRC) (Barton and Choubey, 1977) is
used. The JRC values range from 0 to 20. A JRC value
of 0 represents the most smooth surface, whereas 20
represents the most rough surface.

The conventional analysis is done by grouping the
discontinuities into families or sets based on orientation
only, and then summarising the other attributes by these
groupings. Although this approach works well in
situations where the clustering of joints into orientation
families is obvious, it breaks down under typical
conditions where the geologic structures change, espe-
cially in long boreholes. Under these conditions, the
joints often do not cluster well into families, and the
geological engineer must make arbitrary decisions on
how to interpret the data. Consequently, the available
data are typically underutilized.

This research is designed around building a new
software package for characterizing discontinuities

Fig. 1. Schematic drawing of borehole intersecting rock mass shows that discontinuous rock is perceived as set of blocks separated by

series of discontinuities (adapted from Hudson, 1989).
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based on multivariate-clustering algorithms. The new
analysis tool being developed, incorporates the various
attributes of the discontinuities in a multivariate
analysis, and uses multi-dimensional clustering to
identify joint sets and geological/geomechanical do-
mains (statistically homogeneous regions with respect to
geological structure). The method makes use of both
statistical analysis and three-dimensional visualization
tools, in an integrated and automated package of
computer algorithms.

In order to offer an intuitive view of discontinuity
distribution in a three-dimensional space, different
visualization tools are incorporated in the software
package. Among them, the three-dimensional stereonet
is the most useful one. The concept of the three-
dimensional stereo net involves plotting each joint
normal on a separate stereonet and stacking them
together on top of each other according to their position
along the borehole. This idea was first used by Wenk
et al. (1987) to represent the pattern of lattice-preferred
orientation in deformed rocks. A detailed introduction
about this idea can be found in Maerz and Zhou (1999,
2000), and Zhou and Maerz (2001).

2.2. Nearest neighbor clustering method

For the nearest neighbor method (also called single
linkage method), the similarity of the discontinuities is
evaluated by distance-type measure. Some measures of
distance are special cases of the Minkowsi metric, which
is defined by (Dillon and Goldstein, 1984)

» 1/r
dj = {Z [ Xk — /ijlr} , (D
=

where dj; denotes the Minkowsi distance between two
objects i and j, X is the value of a parameter, and p is the
number of parameters considered in the analysis.

If r = 2, then the familiar Euclidean distance between
object i and j is obtained (Dillon and Goldstein, 1984;
Mardia et al., 1979).

, 12
Ed; = { [ X ~ X/k|2} ) 2
X

=1

where Edj; denotes the Euclidean distance between two
joints (i and j) in a p-dimensional space.

If there are n discontinuities, an n-by-n matrix of
Euclidean norm is created, where the element in the ith
row and jth column represents the distance between
individuals / and j induced by the Eq. (2).

At the first stage of the merging process, the two
individual objects (for example ith and jth disconti-
nuities) with the smallest entry are joined to form a
cluster since they are the closest. Once the cluster is
formed, the distance between the cluster and the
remaining individuals is computed, and the smaller

value of Edy and Edy remains in the matrix, k =
1,2, ...,n(k#i, k#Jj).

Next a matrix of Euclidean norms can be constructed;
whose elements are inter-individual and inter-group
distances. Performing the above merging procedures
repeatedly forms new or larger clusters. The number of
rows and columns of the matrix is reduced by one every
time a merge is made. At the last stage, the two clusters
are merged to form a single cluster containing all the
individuals.

The following example (Fig.2) summarizes the
various stages at which merging are made. The
individuals joined together first have the most similarity
and individuals joined together last have least similarity.
Fig. 2 is a tree diagram (dendrogram). The numbers in
horizontal axis represent the individual objects and the
vertical axis represents the element values in a Euclidean
distance matrix.

The number of clusters is specified before processing,
and the merging is concluded when the appropriate
number of clusters is reached. Instead of specifying the
number of clusters required, a threshold value of the
Euclidean norm may also be specified which indirectly
determines the number of clusters. Fig. 3 illustrates the
overall process of the nearest neighbor method.

For discontinuity data analysis, variable transforma-
tions are first required. There are two different types of
discontinuity parameters: vector and scalar. To calculate
the mean of the orientation within each discontinuity
set, first the normal of every discontinuity is represented
by three components (Vx, Vy, and Vz). Then the sums of
each of the components of all the discontinuities with
the same set are calculated, and finally the three

30 +

Euclidean distance

1 2 3 4 5 6
Number of objects

Fig. 2. Example of tree diagram (dendrogram) of nearest
neighbor method shows various pairwise merging stages.
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Input n number of discontinuities
with p number of attributes
Input the number of clusters desired

Calculate the p-dimensional
Euclidean norm between every pair
of discontinuities and form a
n-by-n Euclidean norm matrix

Find the minimun entry in the matrix,
merge the corresponding
discontinuities and reduce the matrix
by one row and one column

Number of row/column of

the Euclidean norm matrix
>

Number of clusters

Fig. 3. Flow chart shows overall process of nearest neighbor
method.

components vectors are combined to form the mean
normal (orientation) for each discontinuity set. For the
scalar parameters, arithmetic means are used.

2.3. K-means clustering method

A detailed discussion about K-means method is given
in Dillon and Goldstein (1984). The K-means method
assumes that the number of the final clusters is known
and specified in advance. The basic steps for K-means
clustering include: (1) form the initial clusters, (2)
allocate the discontinuities to clusters, and (3) reallocate
some or all of the discontinuities already clustered if
they are inaccurate.

Assume n discontinuities have been measured and
consider three attributes (parameters) for each disconti-

nuity. Denote by x(i, j) the value of the ith discontinuity
on the jth parameter (variable); i = 1,2, ..., n and j =
1,2,3. Let P(n, K) be the partition that results in each of
the » discontinuities being allocated to one of the K
clusters, and let / denote the /th cluster; / = 1,2, ..., K.
K is the number of clusters. The mean of the jth variable
in the /th cluster will be denoted by X(/,j), and the
number of discontinuities belong to the /th cluster by
n(/). Based upon the above notation the Euclidean
norm, D[i, (i)}, between the ith joint and the center of
the mean of /th cluster can be expressed as (Dillon and
Goldstein, 1984)

p

1/2
D[i, I() = (Z[x(i,j) —fc(l,j)]z) : 3)

J=

The error component, E[P(n, K)], of the partition is
defined by (Dillon and Goldstein, 1984):

E[P(n,K)] = Y _ DIi, [T, O]
i=1

where [(i) is the cluster that contains the ith disconti-
nuity, and DI[i,/(i)] is the Euclidean norm between
discontinuity / and the mean of the cluster containing
the discontinuity which is defined by Eq. (3).

This procedure is repeated until the minimum error
component of partition is determined. The specific
procedures are summarized in the following steps:

(1) Form the initial clusters arbitrarily.

(2) Calculate x(/, /) the mean of the jth variable over all
discontinuities in the /th cluster.

(3) Calculate the Euclidean distance between the ith
discontinuity and /th cluster as given by Eq. (2), in
which, p is the number of parameters considered.

(4) In order to minimize the error component given by
Eq. (5), The following value has to be computed for
every discontinuity. It will check to see if any
allocation of any discontinuity from one cluster to
another results in reduction in the initial cluster
error.

()D&, 1) _ nl@)DG, 1)

n(l)+ 1 n(l(i)) — 1 )

Ry =

(5) Form the final clusters.

Fig. 4 illustrates the overall process of the K-means
method. Data transformations are required as before.
For the nearest neighbor method, cylindrical coordi-
nates are used for orientation and spacing variables.

When calculating the Euclidean distance, both origi-
nal vector and its corresponding ‘“‘mirror” vector are
used. A mirror vector is used to cluster ‘“‘around the
outside” of the steronet, as defined in Fig. 5. The mirror
vector is constructed by taking the complementary
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Input n number of discontinuities
with p number of attributes
Input the number of clusters desired

Initialize/assign a cluster number to every
discontinuity (There are n number of
discontinuities total)

—————i?}et an input discontinuity X;(i=1 .2..'..nﬂ

Compute the error reduction value of
discontinuity X;with respect to all clusters

Are there any error reduction due to
discontinuity X;reallocation

Reallocation the discontinuity X;to the
proper cluster

No

inuities are pi

Fig. 4. Flow chart shows overall process of k-means method.

- e
Mirror vector (B) . -

Mirror Hemisphere

. -
Original vector (A)

Unit Hemisphere

Fig. 5. Schematic drawing shows concept of mirror vector.

vector to vector 4 (magnitude =1 — [4]) and adding this
to the unit vector in a direction opposite to vector 4.
The smaller arc length between the two is used in further
analysis. A vector flag is used to trace whether the
original vector or the “mirror” vector is chosen. This is
important for calculating the mean orientation within
each clustering group.

2.4. Fuzzy c-means clustering method

Zadeh (1965) first introduced fuzzy sets as a new way
to represent vagueness in everyday life. The “fuzzy”
concept has been widely adopted in the ficlds such as
pattern recognition, neural networks, image processing,
and expert systems. However, not much attention has
paid in the geoscience and rock engineering literatures.
Examples of such works include Tao and Peng (1983),
Harrison (1992), Hudson and Hudson (1993), Feng et al.
(1997), and Hammah and Curran (1998, 2000). Descrip-
tions of this method can be found in several publications
(eg. Bezdek, 1981; Gath and Geva, 1989; Xie and Beni,
1991).

The fuzzy c-means method (FCM) is based on
minimization of the following objective function (Bez-
dek, 1981):

n 4
T =3 )" d*(X;, V) (c<N), (6)
J=1 =1
where u; is the fuzzy membership, V; is the cluster
centroid, ¢ is the number of clusters, # is the number of
discontinuities, d*(X}, V;) is any inner product metric
(distance between X; and V}), the variable m is the
degree of fuzzification that controls the fuzziness of the
memberships and is a real number greater than 1. As the
values of m become progressively higher, the resulting
memberships become fuzzier. No theoretical optimal
value for m has been determined, however, m =2 is
frequently used by researchers.
The FCM algorithm involves the following steps:

(1) Select ¢ numbers of initial cluster centers. There are
different ways to do this. One method is to select
the first ¢ data points as an initial guess. Another
method would be to select the initial cluster centers
randomly. In order to get k well separated initial
centers, one data point is picked as the first initial
center, then each subsequent initial guess is picked
such that its distance from each of those already be
chosen is not less than a specified minimum.
Calculate the degree of membership of all disconti-
nuities in all clusters by the following equation
(Gath and Geva, 1989):
(1/d*(X; Vip'"?

i = . 7
T (G vy D )

@

~
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(3) Re-calculate the centroids of the clusters and
update the degree of membership from u; to iy.
For orientation variables, eigenanalysis is used for
finding means, for scalar variables the weighted
mean of the variable in a cluster is calculated by
(Gath and Geva, 1989)

)" X

v, =25
i Z;L](uij)m

¥

(4) Repeat steps (2) and (3) till the following termina-
tion criterion is met:

max u; — | <e, 9
iy ;
where ¢ is a4 termination criterion between 0 and 1.

Fig. 6 illustrates the overall process of the fuzzy
c-means method. To apply fuzzy c-means method to

Input n number of discontinuities .
with p number of attributes
Input the number of clusters desired

Select ¢ number of primary clusters

Compute the degree of membership, u
for all discontinuities over all clusters

ij

Compute the new cluster centers and
update the degree of membership u;;

to Gy
No
maxlu;-O;l < €
(O<e<1)

Yes

Fig. 6. Flow chart shows overall process of fuzzy c-means
method.

discontinuity data, the same variable transformations as
the nearest neighbor method were applied.

2.5. Vector quantization clustering method

The vector quantization method (VQM) begins with
no clusters allocated. The first discontinuity is forced to
create a cluster to hold it. After that, with each new
discontinuity input, the Euclidean norm between it and
any previous cluster is calculated. Once the distance
between the current discontinuity and all previous
clusters is known, the cluster closest to the input
discontinuity may be chosen so that (Pandya and Macy,
1996)

XD — Cel< XD~ G G=1,...,Mj#k), (10)

where X is the ith input discontinuity, C; is the jth
cluster center, Cy is the cluster closest to the input
object, and M is the number of allocated clusters.
After determining the closest cluster, the Euclidean
norm must be tested against a distance threshold that is
selected by the user. If the Euclidean norm is less than
the threshold, then the current discontinuity joins the

Input n number of discontinuities
with p number of attributes
Input a threshold value desired

———" Get an input discontinuity X;(i=1.2,...,n)

Calculate the Euclidean norm between
discontinuity X;and cluster center C;
(j=1,2,..m)

Select the cluster that is closest to
discontinuity X;, such that the
Euclidean norm is the minimum

Min [|X;, G} > threshold value
(i=1,2,..,n; j=1,2,..m)

Create a
new cluster

Discontinuity X; join the closest cluster
and update the cluster center

Fig. 7. Flow chart shows overall process of vector quantization
method (modified from Pandya and Macy, 1996).
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1 232 89 .58
2 76 88 0.95
3 300 80 1.32
4 117 78 1.87
3 183 2 3.1
6 309 78 4.28
7 94 75 5.01
8 278 84 c.85
9 185 11 6.2
10 268 70 7.1
" 259 8% 7.9
12 187 3 7.93
13 285 73 8.08
14 121 79 9.14
15 345 89 9.38
16 192 4 9.42
17 68 780  10.56
18 256 88 10.78
19 181 s 11.01
20 75 85 12.52
21 201 5 12.96
22 281 78 13.18
23 105 69 13.73
2h 84 63 13.94
25 67 84  14.19
26 88 88 14.55
27 92 78 1a.71
28 87 79 15.18
29 299 89 15.58
30 188 2 15.92
31 261 57 16.21
32 182 7 17.18
33 218 90 17.5
Jﬂ 3u oy 78 17.74

5. limestone i

5. sandstone
& sandstone
6. sandstone
7. sandstone
2. sandstone
N, sandstone
6. sandstone
h. sandstone
3. sandstene
7. sandstone
12. sandstone
5. sandstone
S. sandstone
5. sandstone
5. sandstone
k. sandstone
7. sandstone
6. sandstone
3. sandstone
5. sandstone
3. sandstone
12. sandstone
6. sandstone
7. sandstone
14, sandstone
12. sandstone
9. sandstone
7. limestone
7. limestone
3. limestone
6. limestone s
'™ limestone g
5. limestone

Fig. 8. Standard format of input data file contains discontinuity number, dip direction, dip, position along the borehole or scanline,

and roughness and lithology.
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Fig. 9. Toolbar functions.

closest cluster. Otherwise, a new cluster is allocated for
the current discontinuity. For detailed treatment about
this method, see Pandya and Macy (1996). Fig.7
illustrates the overall process of the vector quantization
method.

The variable transformation procedures of vector
quantization method are same as the k-means method.

3. The CYL program

CYL is a new analysis tool, developed in Visual
C+ +* ("Windows, Visual C+ + are registered trade-
marks of Microsoft Corporation), which incorporates
the various attributes of the discontinuities in a
multivariate analysis, and uses multi-dimensional clus-

tering to identify joint sets and geological/geomechani-
cal domains (statistically homogeneous regions with
respect to geological structure). The method makes use
of both clustering analysis and various visualization
tools, in an integrated and automated package of
computer algorithms.

3.1. Data input

An ASCII input file is used for data input. An
example input file format is shown in Fig. 8. This can be
generated using a text editor or a custom report
generator from other software.

The first line of the input data file contains two
variables. They are the roughness and the non-enumer-
able variable flags. These indicate the presence or
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absence of roughness data or non-enumerable data
(color, lithology, infilling, persistence, etc.), respectively.
The remaining lines of the input data file have uniform
line length, and contain information about the different
attributes of every discontinuity. These are discontinuity
number, dip direction, dip magnitude, position along the
borehole or scan line, and roughness and descriptive
data if present.

3.2. CYL user interface

The interaction between users and the program takes
place by using menus, toolbars, shortcut keys and dialog
boxes. Fig. 9 shows the icons and functions of various
toolbars. Toolbars are enabled or disabled depending on
the current display modes chosen.

Each clustering method has its own dialog
box. Fig. 10 shows the dialog box of fuzzy c-means
method (FCM). It allows users to change parameters,
such as number of clusters, factors for determining
the initial cluster centers, and weighting factors inter-
actively.

Fuzzy c-means dialog box

Fig. 10. The FCM dialog box. Number of clusters denotes user
specified discontinuity sets. Separate distance and separate
Euclidean norm are parameters to control distribution of initial
cluster centers. Weighting factors are parameters that control
influence of secondary variables. They range from zero to one,
with larger values exerting more influence on value of variable.

3.3. Output display

In order to display the results, CYL offers many
different views to output the analysis results. These are
cylinder view, stereoscopic view, chart view and table
view. Each view has different interactions, accessed
through toolbars, menus or mouse.

The cylinder view (Fig. 11) offers a three-dimensional
perspective of a lower hemisphere stereonet, where each
pole of discontinuity is plotled on a ““virtual”” stereonet.
Each discontinuity is plotted both in relation to its own
steroenet and vertically in relation to its position along
the borehole. Discontinuities are grouped within a set as
identified by the multivariate cluster analysis, and each
set number is designated by color and or and identifying
number or symbol.

The “cylinder™ in this view can be rotated about two
axes for enhanced viewing. It gives information about
the location of the poles of discontinuity in the stereonet
and the position of the discontinuity along the scanline.
More specifically, if the “cylinder” is rotated to the N-E
plane, it gives a two-dimensional view of low-hemi-
sphere stereonet projection of discontinuity poles. If the
“cylinder” is rotated to the U-N or U-E plane, the scale
bar is in its original position and it helps to read the
distance along the scanline for any given data point.

The movements of the “‘cylinder” can be done via
menu items, tools on the toolbar, or moving the mouse

Cylinder View

- ot
gneiss

Fig. 11. Cylinder view (series of stacked lower hemisphere
plots) displays distribution of discontinuities along borehole,
discontinuity sets to which each discontinuity belongs, distance
scale bar, and rock types that boreholes and scanlines intersect.
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CYL - input4

Jnput4

Dip Direction

180 70
I i

Chart View

360

835

Dip Angle

3’;‘

granite
gneiss

Fig. 12. Chart view offers another perspective of discontinuity distribution along borehole. Selection of split location is chosen from
chart view. Notice that some tool bar functions are disabled in this view, since no rotations are needed.

Clustering Analysis

{set # joints dip dir dip ang position spacing| roughness
1 8 126 77 32.3 7.8 10.4
2 K 196 29 69.4 8.5 4.7
3 5 221 73 109.0 2.2 8.8
4 11 337 28 161.7 7.1 3.4

Fig. 13. Table summarizes average parameters within each discontinuity set.

on the over the view. In addition, the cylinder can be
scaled or moved around the page. Other features include
options to toggle the color numbers to black and white
(for printing on laser printers), and a toggle to display
numbers as symbols.

The chart view (Fig. 12) offers distribution of dip
direction of discontinuities along the borehole and the

distribution of dip angle of discontinuities along the
borehole. In this figure, the data points with the same
number belong to the same discontinuity set. The sets
are distinguished from each other predominantly by
their different orientations.

Using the chart view, the data set can be split into
two separate data sets at the position of the cursor.
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Stereoscopic View

N
/[\

Fig. 14. Stereoscopic view offers three-dimensional picture as if seen through stercoscope.

This is used once GMUs (Geotechnical Mapping
Units) are identified, that would best be analyzed
separately.

The table view (Fig.13) displays the summary
statistics for each cluster. The stereoscopic view
(Fig. 14) offers a thee-dimensional view of the borehole,
designed to be printed and viewed with a pocket
stereoscope.

4. Applications

The first example of using CYL program is given in
Figs. 15A-D. For this example the discontinuities along
a section of outcrop of gneiss and gabbro were mapped
along a nearly horizontal scan line. The parameters
measured of each discontinuity include orientation,
distance, JRC, nature of the discontinuity and lithology.

Cluster analysis using orientation only by the nearest
neighbor method is shown in Fig. 15(B). It reveals there
is one sub-horizontal discontinuity set (set 2, which is
the bedding planes), and two sub-vertical joint sets (set 1
and 3).

Clustering results using multivariate analysis by the
nearest neighbor method considering orientation and
position show a near horizontal discontinuity set and a
series of three sub-vertical discontinuity sets (Figs. 15C
and D). The sub-horizontal discontinuity set has a JRC
of 14.0 and average spacing of 9.3 feet (set 2). Sets 3 and
4 have similar mean JRC values (13.6, 13.5), but are
distinguishable by their different orientation, position

along the scan line, and average spacing (1.8, 2.4). Sets
1 and 5 are both sub-vertical and have similar mean
JRC values (12.4, 12.8), but are distinguished from each
other by their substantially different average spacing
(4.3, 2.7m) and position along the scan line (31.1,
81.5m).

A long borehole might traverse more than one
mapunit (GMU). There are different distribution
patterns of discontinuities at different GMUs. Conse-
quently, during the analysis, it often proves useful to
split the data set into different GMUSs.

Figs. 16A—C show an example of a data set that
is split into two portions by the user. This results in
two new windows opening for each data set. Each of the
new windows can be saved as a separate data file, and
each of the new data files can further be split, as
required.

Fig. 16A is the original single data file. After splitting
it results in two separate data files by manually selecting
the split position. Further clustering analysis shows
that three joint sets are identified in the upper portion
of the borehole (Fig. 16B), and five joint sets are
identified in the lower portion of the borehole
(Fig. 16C). This result indicates that in some situations
the clustering analysis can give valuable insights by
partitioning into subsets. The problem is how to
chose the best split locations? In order to provide a
systematic guideline further studies are needed. The sug-
gested rule of thumb includes looking at the lithologic
changes and the transitions of different distribution
patterns.
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. gabbro
(C) gneiss

Clustering Analysis
set # joints | dip dir dip ang position | spacing| roughness
- 1 -
1 14 263 8l L.l | 12.4
2 11 246 21 55.2 9.3 14.0
3 19 171 s 17.0 1.8 13.6
4 9 136 80 64.5 2.4 13.5
5 26 201 7% B8l.5 2.7 12.8
(D)

Fig. 15. (A) Discontinuities along section of highway outcrop of gneiss and gabbro were sampled along nearly horizontal scan line. (B)
Cluster analysis by nearest neighbor method based on orientation only. Three joint subsets were identified by their dips and dip angles.
(C) Multivariate cluster analysis by nearest neighbor method based on orientation and spacing. Scale bar on right indicates depth of
scan line as well as rock types. (D) Tabular output from CYLINDER program shows discontinuity sets number, number of
discontinuities in each set, mean orientation (dip and dip angle), mean position along the scan line (meter), mean apparent spacing

(meter) and mean roughness (JRC).

5. Conclusions

This paper demonstrates a methodology that clusters
discontinuity into subsets based on multiple attributes,
so that discontinuities within the same subset will have
similar geometric properties.

The CYL software package has the ability to
incorporate discontinuity parameters, such as roughness
and infilling materials, into the analysis. Multivariate
clustering implemented in CYL is an effective
and efficient method for characterizing rock discon-
tinues.
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