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Roughness scale effects and fractal dimension

N.H.Maerz & J.A.Franklin
University of Waterloo, Ont., Canada

ABSTRACT: Using shadow profilometry, the authors have investigated the effect of the scale of observation

on measurements of roughness, and have confirmed that a roughness scale effect exists.

The method of

measurement acts as a bandpass filter, allowing scale effects to be quantified from images at different

magnifications.

Fractal dimension has also been investigated as a means of characterizing roughness.

The rock profiles

tested were found not to be self-similar at different scales of observation, providing further evidence for a

scale effect.

1 INTRODUCTION

From the measured roughness of a rock joint can
be predicted shear strength (Patton, 1966; Ladanyi
and Archambault, 1969; Barton, 1973), hydraulic
conductivity (Barton et al., 1985; Elsworth and
Goodman, 1986), and deformability (Swan, 1983;
Bandis et al. 1983).

Methods for measuring roughness, such as
electro-mechanical profilometers, are usually
impractical, slow and complicated. Data collection
often presents excessive risk to personnel, and the
amount and quality of data collected are usually
inadequate for valid statistical representation.
Shadow profilometry (Maerz et al., 1990) is an
alternative and simpler tool. It relies on the
principle of the Schmaltz microscope (Schmaltz,
1936) which produces a profile of a surface by
projecting a linear shadow edge onto a roughness
surface (Fig. 1). The undulating shadow is
photographed, digitized, and processed to isolate
the roughness waveform, which is then
characterized by measuring one of many available
geometrical or statistical parameters.

A roughness parameter employed in this paper is
the "micro-average i-angle”, a measure of the slope
of the digital trace equal to the average angle
between the mean plane of roughness and adjacent
pixels on the digiial waveform. The waveform is
sampled at an interval called the "resolution” of
the image, which in the author’s image analyzing
system is equal ic the pixel separation.

2 ROUGHNESS SCALE EFFECTS
2.1 Introduction

A scale effect exists if mcasurements of the same
surface at different sczles of observation give
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different roughness values. From previous studies
using shadow profilometry, we had observed that
increased sampling lengths tended to give reduced
values of slope-type roughness parameters. The
same was reported by Barton and Choubey (1977),
who found that asperities of long wavelength tend
to be less steep.
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Shadow cast on corrugated cardboard.

Fig. 1:

2.2 Tests on corrugated cardboard

To test the profilometry method itself, images were
analyzed of corrugated cardboard with wave
amplitude of 2.5 mm and wavelength of 6.5 mm.
If the method returned similar values of roughness
irrespective of the scale of observation, this would
demonstrate freedom from inherent scale effects.
Profiles were digitized at trace lengths of 20, 50,
100, 200, 500, and 1000 mm (Fig. 2), corresponding
to pixel separations (i-angle base lengths) of about
0.04, 0.1, 0.2, 0.4, 1, and 2 mm respectively. The
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Fig. 2: Profiles of corrugated cardboard at
different scales of observation.

pixel separation defines the resolution of the
image, and depends on the distance from the
camera to the rock surface (called the object
distance).

The resulting profiles showed a well-defined
sinusoidal waveform at up to 200 mm trace length
(0.4 mm pixel separation). At 500 mm trace
length (1 mm pixel separation), the sinusoidal
shape was compromised by lack of resolution. At
1000 mm trace length (2 mm pixel separation), the
waveform was almost completely lost because of
poor resolution. Also evident at extremes of scale
were a higher frequency (roughness of the paper
itself) and a lower frequency (undulation of the
mean plane of the paper).

For pixel separations of up to 1 mm on the
corrugated surface, the average i-angle was 31° =
2.7° for all measurements. At 2 mm pixel
separation however, the roughness waveform was
too small to be completely resolved, so the
measured micro-average i-angle was far lower at
e

The experiment demonstrated that for a
characteristic size of roughness asperity, the
profilometry method evaluated roughness
consistently until the asperity size approached the
effective resolution of the system. For the
cardboard example, a ratio of height of asperity to
pixel separation of 2.5:1 marked the limits of
effective resolution. This is consistent with
Nyquist sampling theory which suggests that
frequencies greater than twice the sampling rate
will not be resolved.

This is nothing more than a low pass filtering
effect. Similarly, a high pass filtering occurs if a
complete wavelength is not sampled. These two
limiting effects combine to make the sampling
procedure a bandpass filter,

2.3 Tests on rock joint surfaces

The roughness asperities on a rock joint surface
are not of a single characteristic size, but include
multiple superpositions of different sizes. Because
the sampling procedure acts as a bandpass filter,
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only those wavelengths that can be effectively
sampled will contribute to the measured roughness.

Two series of field tests were conducted to
investigate scale effect. In the first, three profiles
each at 100, 200, 500, and 1000 mm trace lengths
were taken in the INCO Creighton Mine, Sudbury
Canada, using shadow profilometry. In the second
test series, a 5 m vertical joint face on a road cut
100 km south of Sudbury was used. A surveyors
chord, marked off in 200 mm intervals, was
stretched out horizontally. One measurement was
taken of the entire 5 m length, two at 2 m
lengths, six at 0.8 m lengths, twelve at 0.4 m
lengths, and twenty-one at (.2 m lengths. A
typical profile of each trace is shown in Fig. 3.
For these profiles, the pixel separations were
equivalent to about 10, 4, 1.6, 0.8, and 0.4 mm
measured on the rock surface.
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Fig. 3: Profiles of a rock joint at different scales
of observation.

The road cut experiment results are given in Fig.
4. In this and also in the Creighton Mine
experiment, measured roughness was found to
decrease non-linearly as the pixel separation
increased. This scale effect results from a change
in pixel separation for images at different object
distances. By changing the object distance, the i-
angle (from pixel to pixel) is measured over a
range of base lengths.

The same scale effect could be determined from
a single image by measuring the gradients of lines
joining every second, third etc. pixel, although the
range of investigation would then be limited by the
bandpass filter for the given single image.

The scale effect found in these experiments is a
true characteristic of the rock surface, although
measured by a technique that makes use of a
method-dependent image resolution. Pixel-to-pixel
gradient implies measurement at a specific scale.
Micro-average i-angle therefore must be
represented as a curve or graph as in Fig. 4, not
as a single value. The curve could be
characterized by parameters of a curvilinear
equation. There may be other measures of
roughness that are scale invariant.
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Fig. 4: Micro-average i-angles of Fig. 3 profiles,
as a function of trace length, with power law best
fit. Error bars are standard deviations.

3 FRACTAL DIMENSION

3.1 Introduction

The concept of a fractal dimension was introduced
to resolve an enigma in the measurement of the
length of irregular objects such as coastlines
(Mandelbrot, 1982). Conceptually, the length of
an undulating coastline is not a constant, but
depends on the length of the measuring yardstick".
When measured with a long yardstick, a coastline
appears shorter than when measured with a short
one.

In the Mandelbrot Richardson covering method
(Mandelbrot 1982), the fractal dimension of the
coastline can be calculated by counting the number
(n) of yardsticks of length r that are needed to
cover the extent of the profile. This measurement
is repeated for various lengths of r. Finally, log
(r) is plotted against log (nr).

According to Mandelbrot, if this plot is linear,
the coastline is a "fractal object” and the slope can
be equated to 1-D where D is the fractal
dimension. The magnitude D is a function of
roughness; the more undulating the object, the
higher the fractal dimension. It has a minimum
value of 1.0 for a straight line and approaches 2.0
for an extremely rough line.

For the fractal dimension to be constant (i.e. a
linear slope on the plot) the object must be self-
similar, meaning that its form is the same at all
scales of observation. If the object is not self
similar (not fractal), then D is not a constant but
rather a function of the scale of observation.

Fractal analysis of this type has been applied to
rock surfaces by Zipf and Bieniawski (1988), Carr
and Wariner (1987), Turk et al. (1987), and Barton
and Larson (1985); to metal fractures by Banerji
and Underwood (1983) and Chernant and Coster
(1978); to microstructures by Farin et al. (1985),
Pfeifer (1983), and Wright and Karlsson (1982);
and to fault systems by Aviles and Scholz (1987),
and Okubo and Aki (1987).

There are, however, reasons why fractal analysis
may not be appropriate for characterizing the
roughness of rock joint surfaces:

. Mandelbrot (1985) suggests that relief
profiles are not self-similar. Although the
fractal dimension of non-fractal objects can
always be calculated, it has no theoretical
meaning.

. The fractal dimension of a continuous
differentiable function such as a sine wave
is 1 (Mandelbrot 1982), the same as that of
a straight line. From a rock mechanics
viewpoint a sinusoidal surface and a flat
surface have very different roughnesses,
which should be reflected in the measured
values.

3.2 Verification of the fractal dimension method

An algorithm was developed which used the
Mandelbrot-Richardson covering method to
calculate the fractal dimension D of a digitized
profile. The values of log (r) vs. log (nr) were
plotted, and a linear least squares best fit was
calculated.

The method was verified by measuring D for
three different objects whose dimension is known;
a straight line, a von Koch snowflake (Fig. 5), and
a sinusoidal wave.

As expected, the measured D of the straight line
was 1.00. For the von Koch snowflake, the
measured D of 1.214 proved less than the
theoretical value of D = (log 4)/(log 3) = 1.262
(Voss, 1988). This is attributed to the resolution
limitations of the image analysis system.
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Fig. 5: The Von Koch snowflake: (a)
configuration of the snowflake, a fractal object
with D = 1.262 (b) Linear fractal plot of the
Von Koch snowflake showing a measured D of
1.214.
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Fig. 6: Fractal plot of a sine wave. The non-
linear fractal dimension depends on the range over
which it is calculated.

The sine wave was analyzed as an example of a
continuous differentiable function whose D should
be 1. The resulting fractal plot (Fig. 6) was
severely non-linear with D = 1.051 as an "average”
for the data as a whole. However, when
determined at small r (smallest possible under the
constraints of the image analysis system), the D
reduced to 1.015. At very small r, D may
approach 1.0.

3.3 Correlation of fractal dimension with JRC

The fractal dimensions of the Barton and Choubey
(1977) roughness type-profiles were also measured
using the Mandelbrot Richardson covering method,
an approach similar to that of Carr and Warriner
(1987). The plots are typically non-linear, and
thus the value of D depends on the range of r
over which it is measured. This non-linearity
implies that the Barton and Choubey type-profiles
are not fractal objects (not self similar), and that
fractal dimension may not be applicable.

However, a plot of D vs. JRC (Fig. 7) showed a
Pierson's multiple correlation coefficient of R =
0.973 (high correlation), for the following
regression equation:

D = 1+ (0.000534 JRC)

As a predictor of JRC, the equation becomes:

JRC = 1870 (D - 1)

Fractal analysis of individual type-curves shows
that they are distinctly non-fractal. For example,
Barton and Choubey’s profile No. 3 (JRC 4-6) is
shown in Fig. 8. Based on a best-fit line to the
entire curve, D = 1.00286, equivalent to JRC =
5.3 using the above linear predictive equation.
However, if D is calculated using only the right or
left extremes of the graph, it varies from 1.00071
to 1.00696, equivalent to a JRC range of 1.3 to
13.0. This reveals a scale effect, and underlines
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Fig. 7: Plot of D vs JRC for the Barton and
Choubey (1977) type profiles.

the danger of applying fractal analysis
indiscriminately to non-fractal objects.

3.4 Fractal dimension of rock joint surfaces

Fractal dimension was estimated for the rock joint
profiles described in Section 2.3, using the
Mandelbrot-Richardson covering method. The
fractal plots were found to be non-linear indicating
that the rock surface was non-fractal.

In a further experiment, the fractal dimension
was measured by changing the resolution, a
method proposed by Chernant and Coster (1978).
This made use of the profiles with trace lengths of
200, 400, 800, 2000, and 5000 mm and resolutions
of 0.4, 0.8, 1.6, 4, and 10 mm respectively. Values
of r were scaled relative to the resolution.

A self-similar (fractal) surface should have
identical D for all resolutions. Figure 9 shows
that the measured D in fact increased with
increasing resolution, confirming a non-fractal rock

surface. There is an obvious scale effect. In fact,
this graph looks remarkably like Figure 5,
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Fig. 8: Fractal plot of Barton and Choubey (1977)
profile No. 3 (JRC = 4-6).
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Fig. 9: Fractal dimension measurement of the
profiles of Fig. 3 as a function of base length, with
power law best fit. Error bars are sample
standard deviations.

indicating that fractal dimension is no more scale
independent than a simple slope type index
parameter, such as i-angle.

4 Discussion and conclusions

Shadow profilometry has been used to demonstrate
a roughness scale effect on rock joint surfaces.
The shorter the base length over which the i-angle
is measured, the steeper the average asperity
angle.

Similarly, the measured rock joint surfaces have
been shown to be non-fractal. Their fractal plots
are non-linear, and D decreases for longer
"yardsticks", which gives further confirmation of a
roughness scale effect.

Although D is highly correlated with JRC for
the Barton and Choubey type-profiles, JRC can be
predicted only if D is calculated from a straight
line fitted to the same range of ’r’ values as used
to derive the correlation equation. The data set is
decidedly curved, and scale effects can lead to
considerable errors in estimating JRC.

Some authors have suggested that the fractal
approach is valid if the fractal plot is piecewise
linear (Barton and Larson, 1985). Theoretically, the
fractal dimension of an object is taken at the limit
as the length of the 'yardstick” approaches zero
(Voss, 1988). The resolution constraints of any
measuring system, however, dictate a finite lower
limit for the length of the 'yardstick”, at or near
the limit of resolution, e.g. the pixel size.
Resolution limitations can be overcome to the
extent required, by close-up photography combined
with mosaicing to examine long wavelengths.

Note that long wavelengths may be at least as
important as short ones in governing properties
such as shear strength. Therefore parameters that
characterize roughness only over a narrow range of
wavelengths (small, for example), may turn out to
be poor predictors of shear strength. Roughness
should be measured at all wavelengths, small and

large, and characterized by parameters that define
a size-roughness curve.

A further flaw in the use of fractal dimension is
that identical values of D are given to a sine curve
and a straight line. This is intuitively unacceptable
in rock mechanics applications.
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