
 

 

1 INTRODUCTION  

1.1  Rock mass characterization 
 

The characterization of the structure of rock masses 
is an important consideration in engineering projects 
in rock.  Often it is the discontinuities or joints and 
not the intact rock that governs the mechanical and 
hydrological behavior of the rock mass (Figure 1). 
Rock characterization using oriented bore-hole core 
data or borehole camera data, although not as com-
prehensive as mapping trial excavations or outcrops, 
is often more useful because it is cost effective, and 
can target the exact location of a proposed under-
ground structure. But because of the lack of effec-
tive tools for the interpretation of this data, it is more 
often than not underutilized (Maerz & Zhou 1999). 

In a previous paper (Maerz & Zhou 1999) a new 
approach to the analysis of oriented borehole discon-
tinuity data was introduced. Rather than considering 
parameters such as orientation, spacing, infilling, 
wall rock strength, roughness and mineralization in-
dividually, a multivariate approach was used.  The 
new approach is designed around building a new 
multivariate-clustering algorithm, utilizing both spa-
tial data, and spherical orientation data. The data is 
presented in terms of a “3 dimensional” stereonet 
(Figure 2) where joint normals are plotted on indi-
vidual “stacked” stereonets, where each normal is 
plotted with respect to its own stereonet, and each 
stereonet is plotted in a linear position that corre-
sponds to the position where the joint corresponding 
to that joint normal intersects the bore hole.   

 

 
In this paper we report advances in the method.  

In addition to the nearest neighbor and K-means 
method of cluster analysis, we have added three 
more methods: an unsupervised nearest neighbor 
method, a fuzzy C-means method, and a vector 
quantization method.  Unsupervised methods do not 
require a-priori knowledge of the number of sets, 
and consequently, are less subjective.  Roughness 
has been added to the analysis as a fourth parameter 
in the multivariate analysis.  In addition analytical 
methods are developed to use the results of the 
analysis of one borehole to determine the optimum 
drilling angles for subsequent boreholes in terms of 
optimizing the number of discontinuity intersections, 
as a function of the discontinuity orientations. 

Figure 1.  Powerhouse excavation in northern Mani-
toba, Canada, showing discontinuity controlled fail-
ures in granitic gneiss.
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ABSTRACT:  This paper presents ongoing research in improvement of analytical tools for the characteriza-
tion of rock mass structure from oriented borehole discontinuity data. Using automated multivariate cluster 
analysis and the “three dimensional stereonet” provides for fast and objective characterization of oriented core 
discontinuity data.  Improvements to the CYL software include three new methods of cluster analysis, incor-
poration of roughness as well as orientation and spacing as variables, additional visualization modes, and an 
automated method to split the data set into different Geotechnical Mapping Units (GMU). In addition the pro-
gram facilitates the selection of optimum drilling angle for boreholes. 



 

 

 

 
 

 

 
 

Figure 2a. Top: A lower hemisphere stereonet with 
four joint normals (poles), each pole ostensibly from 
a different depth along an imaginary vertical bore 
hole. Middle: Each joint normal (pole) is plotted on 
an individual stereonet.  Bottom: The individual 
stereonets are stacked, with each spacing in propor-
tion to the spacing between discontinuities in the 
borehole.  S1,2 is the spacing distance between dis-
continuity 1 and 2.  (Maerz & Zhou 1999). 

 

 

 
Figure 2b. “Three dimensional stereonet”, showing the 
example from Fig. 1a.  (Maerz & Zhou 1999). 

 
 

2 NEW CLUSTER ANALYSIS METHODS  

2.1  Previous methods 
 

Two basic categories of clustering technique, the 
nearest neighbor or single linkage method (hierar-
chical) and K-means method (partitioning), were 
presented in a previous paper (Maerz & Zhou 1999).  
Three additional methods are presented here, an 
unsupervised nearest neighbor method, a fuzzy C-
means method, and a vector quantization method.   

 
2.2  Unsupervised nearest neighbor method 
 
For the nearest neighbor method (Dillon & Gold-
stein 1984), the similarity between joints is based on 
distance measurements. Joint orientation can be ex-
pressed as a vector in spherical coordinates.  The arc 
length between the two vectors in a spherical coor-
dinate is adopted as the first variable.  The second 
variable is the distance between each pair of joints in 
the direction down the borehole.  

An example of a measure of distance between ob-
jects in p dimensional space is the Euclidean norm: 

 
 

 (1) 
 

Where:  dij denotes the similarity distance between 
two objects i and j,  

  |Xik-Xjk| is the array of physical distances 
(arc length and spacing in our example).   

 
Since the orientation measure is in terms of arc 
length on the unit sphere and spacing is in terms of 
meters or feet, the values of the individual parame-
ters are normalized by dividing by their standard de-
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viation.  In addition, each of the parameters has an 
optional weighting factor in the algorithm. 
To implement the nearest neighbor method, a matrix 
of Euclidean norms is created, where the element in 
the ith row and jth column represents the dissimilar-
ity distance between objects i and j induced by the 
above Euclidean formula.  

During the first stage, the two objects, for exam-
ple i and j, with the smallest Euclidean distance are 
merged to form a cluster, since they are closest.  The 
smaller Euclidean distance between i or j and all 
other objects are retained in the matrix, and the ma-
trix is reduced by one row and one column.  The ar-
ray is now one whose elements are inter-individual 
and inter-group (object cluster) distances.  

The above procedures are repeated to form new 
clusters and further reduce the matrix.  In the end the 
last two clusters would be fused to form a single 
cluster containing all the individual objects.  Instead 
of terminating the analysis by a pre-specified num-
ber of clusters, the analysis is terminated when a 
threshold minimum value of Euclidean distance is 
reached, after which no further mergers are allowed. 
 
2.3 Fuzzy C-means method 
 
The fuzzy c-means method (FCM) developed by 
Zadeh (1965) first introduced fuzzy sets as a new 
way to represent vagueness in everyday life. The 
“fuzzy” concepts have been widely adopted in the 
fields such as pattern recognition, neural networks, 
image processing, and expert system. However the 
geo-science literature has paid very little attention to 
fuzzy logic in this context, the notable exceptions 
being Harrison (1992) and Hammah & Curran 
(1998).  

For clustering of discontinuity data this approach 
is useful because in many cases the clusters can have 
a wide dispersion, and the boundaries between clus-
ters can be vague.  

The FCM algorithm is based on minimization of 
the following objective function (Bezdek 1981): 

 
 

k ≤ n      (2) 
 

 
Where: uij is the fuzzy membership, 
 Xj is the measure of individual parameter, 
 Ci is the cluster centroid,  
 k is the number of clusters,  
 n is the number of data points,  
 d2(Xj, Ci) is any inner product metric (dis-

tance between Xj and Ci), and,  
 m is the degree of fuzzification and is a 

real number greater than 1.  
 

The variable m controls the fuzziness of the mem-
berships. As the values of m become progressively 
higher, the resulting  memberships  become  fuzzier.  
No theoretical optimal value for m has been deter-
mined, however, m=2 is most commonly used by re-
searchers (Bezdek 1981, Gath & Geva 1989, Ham-
mah & Curran 1998). 

 
The FCM algorithm is implemented by the fol-

lowing procedures: 
 

1. Selecting k number of initial cluster centers.  
2. Calculating the degree of membership of all 

data points in all clusters. 
3. Re-calculating the centroids of the clusters and 

updating the degree of membership from uij to 
ûij. For orientation data eigenanalysis is used 
for finding means (Hammah & Curran 1998), 
for non-orientation data weighted mean is 
used. 

4. Repeating steps 2 and 3 until the following 
termination criterion is met: 

 
    

(3) 
 
 
where ε is a termination criterion between 0 and 1. 
 
2.4  Vector quantization method. 
 

The vector quantization method (VQM) is an un-
supervised learning method (Pandya & Macy 1996). 
It begins with no clusters allocated. The first object 
(discontinuity) will force a cluster to be created to 
hold it. After that, with each input, the Euclidean 
distance between it and any allocated clusters is cal-
culated. Once the distance between the current joint 
and all allocated clusters is known, the cluster clos-
est to the input object may be chosen so that (Pandya 
&  Macy 1996): 

 
 

 (4) 
 
 
where:  X(p) is the pth input vector,  

Ck is the cluster closest to the input 
discontinuity,  

Cj is the jth cluster center, and,  
M is the number of allocated clusters. 

 
After the closest cluster has been chosen, the 

Euclidean distance must be tested against a user se-
lected distance threshold. If the Euclidean distance is 
less than the distance threshold, then the current 
member joins this cluster.  If not, a new cluster is al-
located.  Once membership to a cluster has been es-
tablished, the center of newly modified cluster must 
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be re-calculated. The new cluster center is formed 
by taking the mean value of all members. 

 
3 INCORPORATION OF ROUGHNESS 

PARAMETER 

3.1  Introduction 
 
In addition to orientation and spacing as multivariate 
clustering parameters, the use of roughness is con-
sidered a useful parameter.  Hammah & Curran 
(1998) have used joint roughness in clustering joint 
sets.  In this implementation, roughness is measured 
as a JRC (joint roughness coefficient) as described 
by (Barton and Choubey 1977). 
 
3.2  Implementation 
 
The implementation of roughness as a clustering pa-
rameter is no different than orientation and spacing.  
For example in the case of the nearest neighbor 
method (equation 1), the value of p is 3, meaning a 
three parameter multivariate analysis, roughness, 
spacing, and orientation, and X1 is orientation, X2 is 
spacing, and X3 is roughness.   

Since the orientation measure is in terms of arc 
length on the unit sphere, spacing is in terms of me-
ters or feet, and roughness is in terms of JRC units, 
the values of the individual parameters are normal-
ized by dividing by their standard deviation.  In ad-
dition, each of the parameters has an optional 
weighting factor in the algorithm. 
 
3.2  Example 
 
An example analysis using roughness is given in 
Figure 3.  For this example the discontinuities along 
a section of outcrop of Rubidoux Sandstone were 
mapped along a sub-horizontal scanline.  The scan 
line was oriented such that it crossed the near hori-
zontal bedding planes as well as the sub-vertical 
fractures that were present. The data was then ana-
lyzed with CYL. 
 Standard cluster analysis, using orientation only, 
would indicate two or three specific joint sets, with a 
high degree of scatter in the data (Figure 3). 
 Clustering results using multivariate analysis 
show near horizontal smooth bedding with JRC val-
ues of 3.2 (set 2), and a series of five sub-vertical 
joint sets.   

Sets 6 and 3 are distinguishable by their high 
mean JRC values (11.2, 12.4), and are distinguished 
from each other by their position along the scanline.  
These may represent blast-induced fractures. 

Sets 1, 4, and 5 are distinguishable by their mod-
erate values of mean roughness (JRC 5.9, 6.7, 6.1).  
Sets 1 and 4, 5 are distinguished from each other by 
their mean position along the scanline, while sets 4 

and 5 are distinguished from each other by their sub-
stantially different dip azimuths. 

 

 

 

 

 
Figure 3.  Top: Hwy outcrop of Rubidoux Sand-
stone, which was sampled by a sub-horizontal 
scanline.  Upper middle: Standard cluster analysis, 
orientation only. Lower middle: CYL Cluster analy-
sis of the scanline data using orientation, spacing, 
and roughness.  Bottom: CYL Output chart showing, 
for each cluster, mean orientation (degrees), mean 
position along the scanline (feet), and mean rough-
ness (JRC). 



 

 

 
 

 
 
 

 
 
Figure 4a.  Top:  “3 dimensional” stereonet view 
showing joint sets clustered by multivariate analysis.  
Bottom:  Stereo pair view (not to scale).    
 

 

 

 
 
Figure 4b.  Top: Dip Direction vs. depth by set. 
Bottom:  Dip angle vs. depth, depth in feet. 

 



 

 

4 PROGRAM CYL 

4.1  Visualization improvements 
 
In addition to doing the clustering analysis, and re-
porting the results, the computer program “CYL” is 
extremely useful as a visualization tool.  With it you 
can simultaneously view the projection of the dis-
continuity orientations, the position of the disconti-
nuities down the borehole, and the identification of 
the cluster to which it has been assigned. 

Figure 4a shows the cylinder view, which can be 
rotated and viewed from any perspective on the 
computer screen.  The stereoscopic view is designed 
to be viewed with a pocket stereoscope, when 
printed out at the correct scale. 
 Figure 4b shows the chart view, where dip direc-
tion and dip angle are separately plotted against 
depth (position along the borehole). 
 
4.2 Visual data splitting 
 
Long boreholes may traverse through more than one 
geological or structural domain.  Consequently, dur-
ing the analysis, it often proves useful to split the 
data set into different Geotechnical Mapping Units 
(GMU). 
 Figure 5 shows an example of a data set that is 
split into two sets by the user, by simply clicking on 
the point where the data is to be split.  This results in 
two new windows opening for each data set.  Each 
of the new windows can be saved as separate data 
files, and each of the new data files can further be 
split, as required. 
 
5 OPTIMUM DRILLING ANGLES 

5.1  Introduction 
 
Analytical tools are only as good as the data upon 
which they are based.  In order to optimize the 
analysis the drilling needs to be optimized 

In the case of the analysis of oriented core drill-
ing, there is a directional bias, first documented by 
Terzagi (1965).  Discontinuities that are near per-
pendicular to the borehole are much more likely to 
be intersected during the drilling process than dis-
continuities that are near parallel to the borehole.  
Consequently, a borehole that is optimally oriented 
with respect to the structure orientations will yield 
the most accurate data. In addition, an oriented drill-
ing program incurs significant drilling costs, and in 
order to maximize efficiency, it is highly desirable 
to intersect as many discontinuities as possible in a 
given borehole. 

Thus, the prediction of optimum drilling angles is 
of great importance. 

 

 

 

 
Figure 5.  Top: A single data set.  Manual selection 
of a split point results in two separate data sets. 

   



 

 

5.2 Theory 
 
The proposed method to find the optimum drilling 
direction is based on the analysis of linear sampling 
bias, assuming that there is some a-priori knowledge 
of the structure.  This bias is quantified by a linear 
sampling bias index, which is a function of the rela-
tive angle between the orientation of the borehole 
and the mean orientation of the normals of each of 
the joint sets.  The optimum drilling direction is the 
direction along which the minimum linear sampling 
bias index is obtained.   

In order to quantify the bias due to linear sam-
pling in joint surveys, the term linear sampling bias 
index (LSBI) is defined as: 
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Where:   F(βi) is the linear sampling bias index. 

 n is the number of joint sets. 
 βI is the angle between the borehole incli-

nation and the dip of the ith joint set. 
 

In identifying the optimum borehole inclination 
angle, the angle (βi) between the borehole inclina-
tion and the joint sets inclination (dip) defines the 
linear sampling bias.  Similarly, in identifying the 
optimum borehole azimuth angle, the angle (αi) be-
tween the azimuth angle of the borehole and joint 
sets strike defines the linear sampling bias index.  
The inclination azimuth angle ranges between 0° 
and 180°, borehole azimuth angle ranges from 0° to 
360°. 
 For situations with n joint sets, the optimum azi-
muth angle of the borehole is whenever the follow-
ing value reaches the minimum: 
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where  F(αi) is the linear sampling bias index in 

terms of borehole azimuth angle. 
n    is the number of joint sets. 
αi  is the angle between the borehole azi-

muth angle and the strike of the ith 
joint set. 

 
Consider an example of four sets of joints in Fig-

ure 6.  Joint set #1 is horizontal, set #2 has a 10° dip 
angle and a 20° strike toward East, set #3 has a 45° 
dip angle and a 40° strike toward East, and set #4 
has a 30° dip angle and a 150° strike toward West.  
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Figure 6.  Top:  Example of four sets of joints shown 
in a vertical projection. The line marked “borehole” 
shows the optimum drilling direction as 97° clock-
wise from the horizontal.  Middle: For borehole in-
clination angle, the linear sampling bias index 
reaches its minimum value when the borehole incli-
nation is about 97°. Bottom: For borehole azimuth 
angle, the linear sampling bias index reach co-
minimums at 100° or 280°.  Because of the angle 
convention, the minimum at 100° corresponds to the 
inclination angle of 97°. 



 

 

Figure 6 shows the LSBI as a function the angle be-
tween inclination angle of the borehole and dip an-
gle of the joint sets.  The LSBI, which is defined as: 
 
LSBI =1/sinβ1 + 1/sinβ2 + 1/sinβ3 + 1/sinβ4         (7) 
 
reaches its minimum value when the borehole incli-
nation angle is 97° (towards west). The optimum 
azimuth angle of the borehole is about 100°.    
 

5.2 Application 
 

Figure 7 shows the output results from program 
CYL. The analyzed borehole is a vertical 290-foot 
hole with 232 discontinuities and seven identified 
joint subsets. 
 Using this analysis, it is possible to determine that 
the optimum drilling direction for this situation is at 
an azimuth of 140°, with an inclination of 94°. 
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Figure 7. Top:  Table showing the means of dip di-
rection and dip angle (from the analysis of a bore-
hole).  Middle:  Using this real data, the linear sam-
pling bias index reaches its minimum value when the 
borehole (optimum) inclination angle is about 94°. 
Bottom: Graphic showing the (optimum) azimuth 
angle of these seven joint sets situation is either 140° 
or 320°.  Because of the angle convention, the mini-
mum at 140° corresponds to the inclination angle of  
94°. 
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