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ABSTRACT: This paper describes a new and cost effective method of analyzing hard rock discontinuities 
from oriented core bore hole data.  This algorithm uses multivariate cluster analysis to group discontinuities 
(joints) into sets based on orientation and spatial position (spacing) along the bore hole, and to display the 
data in a three dimensional stereonet.  Although drift or surface exposure mapping data allows better 
characterization of discontinuities, bore hole data is often more readily available, because of lower costs. In 
addition, bore hole data may be more useful because bore holes can be drilled to the exact location where the 
ground needs to be characterized and bore hole data is usually available earlier in the life cycle of an 
engineering project. 
 
 

1 INTRODUCTION 

1.1 Discontinuities in Rock Mechanics 

The characterization of the structure of rock masses 
is an important consideration in engineering projects 
in rock.  Often it is the nature of the discontinuities 
(joints, fractures, bedding planes, faults, and other 
breaks in the continuity of the rock) and not of the 
intact rock that governs the mechanical and 
hydrological behavior of the rock mass (Fig. 1).  
With a few exceptions, most of the rock masses that 
engineers deal with are influenced to some extent or 
another by discontinuities.  
 In rock engineering analysis it is necessary to 
understand the mechanical and hydrological 
behavior of rock masses in order to predict such 
aspects of design as: 
1. The stability of a rock mass (how likely is it that 

the rock will fail, and how catastrophic will the 
failure be?); 

2. The degree of remediation and/or ground 
support required (how do we make it safe?); 

3. The expected amount of deformation as a result 
of applied structural loads (how much 
movement do we have to design for?); 

4. The amount of effort needed to excavate the 
rock (do we need to use explosives, and if so 
how much?); 

 
5. The degree and effect of water infiltration (how 

do we keep it dry?). 
 
While we understand much about the mechanical 
properties of intact, solid rock, our understanding of 
discontinuous rock is significantly less developed. 
 

 
Fig. 1. The discontinuous nature of rock masses. 



 

Fig. 2.  Scribed oriented core. 
 
 
1.2 Analysis of Discontinuities 

State of the Art 
The current state of the art in ground (discontinuity) 
characterization in engineering projects consists 
either of drilling and logging the discontinuities in 
oriented core (Fig. 2) or from bore hole video, or 
trial excavations and mapping of the discontinuities 
on the walls and backs of the excavation.  In 
analyzing the discontinuities, the attributes of the 
individual discontinuities must be identified, 
measured or characterized, and input into a 
predictive model.  Methodologies for this have been 
proposed and or are being used by Kulatilake and 
Wu (1984; 1986), Baecher (1983), Dershowitz and 
Einstein (1988), Hudson and Priest (1979; 1983), 
Priest (1994), etc.  Models in the past have tended to 
be physical or electrical analogs, and now are 
predominantly numerical, but also utilize empirical 
rock mass classification and prediction systems.  
The attributes for discontinuity classification are 
described in ISRM 1981, and shown figuratively by 
Hudson (1989) (Fig. 3).  These include: 
 
1. The discontinuity attitude (orientation), 
2. The distance between adjacent discontinuities 

(spacing), 
3. The physical extent of discontinuities 

(persistence), 
4. The surface characteristics of the discontinuities 

(roughness, strength, mineralization and 
alteration) 

5. The filling material (filling or infilling). 
 
These parameters all in someway affect the 
mechanical and hydrogeological behavior of the 
rock. 
 The advantage of mapping a two dimensional 
exposure is of course that more and better data can 
be obtained, which can ultimately result in better 
characterization.  The advantage of oriented bore 
hole core logging or bore hole video logging is that 

it is much more cost effective, and is capable of 
exploring much deeper, and much larger volumes of 
ground, an important consideration when the ground 
conditions are not homogeneous, or far below the 
ground surface. 
 In analysis, the joints are typically clustered or 
contoured into groups or sets based on their 
orientation only.  At that point the other attributes 
may be summarized for each joint set. 
 In reality it may not be just orientation that is 
common among members of a set.  Spacing or 
persistence or roughness may also play a role, and 
over the length of a long bore hole, orientations may 
not cluster very well.  Do discontinuities group 
conveniently into sets based on more than 
orientation alone? Can we consider clustering of 
sets using orientation and other attributes in a 
clustering algorithm? 
 
Actual Practice 
These above basic discontinuity attributes are more 
or less routinely measured during drilling and drift 
mapping programs in significant engineering 
projects. 
 In more routine situations, such as mining 
development or projects with limited budgets, drift 
mapping is not done because of the extra costs and 
time involved.  Drilling is however routinely carried 
out, and it takes relatively little extra effort to 
measure a wide range of characteristic properties 
from recovered oriented drill core.  Such 
measurement and analysis is, however, not routine, 
because of the lack of useful tools which can make 
use of the measured data and incorporate it into a 
model with practical value. 
 
 
 

 
Fig. 3.  Schematic of a bore hole intersecting a rock 
mass, (Hudson, 1989). 



2 MULTIVARIATE ANALYSIS 

2.1 Concept 

This paper describes a new approach for the analysis 
of bore hole data.  Rather than considering 
parameters such as orientation, spacing, infilling, 
wall rock strength, roughness and mineralization 
individually, a multivariate approach is used.  The 
conventional analysis is done by grouping the 
discontinuities into families or sets based on 
orientation only, and then trying to generalize the 
other attributes to these groupings.  While this 
approach works well in situations where the 
clustering of joints into orientation families is very 
obvious, this approach breaks down under typical 
conditions where the geologic structures vary, or the 
in situ stress field rotates, especially in long bore 
holes.  Under these conditions, the joints often do 
not cluster well into families, and the geological 
engineer must start making arbitrary decisions on 
how to interpret this data.  Consequently, the 
available data is typically underutilized, or not even 
collected in the first place.  
 The new approach is designed around building a 
new multivariate-clustering algorithm. Hammah and 
Curran (1998) have used joint roughness in 
clustering joint sets. Dershowitz, et al. (1998) have 
used discontinuity orientation and spacing to define 
structural domains.   
 The current approach uses both spatial data 
(position along the length of the bore hole), and 
spherical orientation data to identify joint sets. 
Future development will consider secondary 
attributions such as roughness, wall strength, fillings 
and moisture condition, etc. The eventual goal is to 
automatically identify and characterize geological 
domains through which the bore hole passes. 
 Consider the lower hemisphere stereo plot of Fig. 
4a, showing four poles to discontinuity planes.  If 
we plot each joint normal on a separate stereonet 
Fig 4b, and stack them on top of each other (Fig. 
4c), we get a “three dimensional stereonet” (Fig. 5) 
Fig. 7 shows a lower hemisphere stereo plot using a 
contrived data set, using multivariate clustering. 
 
 
Fig. 4a (top right) A lower hemisphere stereonet 
with four joint normals (poles), each pole ostensibly 
from a different depth along an imaginary vertical 
bore hole.   
 
 
 

 

 
 

  
 
Fig. 4b (middle) Each joint normal is plotted on an 
individual stereonet.  4c (bottom) The individual 
stereonets are stacked, with each spacing 
proportional to the spacings between discontinuities 
in the bore hole.  S1,2 is the spacing between 
discontinuity 1 and 2. 
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Fig. 5.  “Three dimensional stereonet”, showing the example from Fig. 4. 
 
 
2.2 Cluster Analysis Methods 

The basis of the grouping of discontinuities in Fig. 5 
is cluster analysis. The two basic categories of 
clustering techniques are hierarchical and 
partitioning.  One of the primary features 
distinguishing hierarchical techniques from 
partitioning techniques is that the allocation of an 
object (discontinuity or joint) to a cluster is 
irrevocable in the hierarchical technique.  That 
means once an object joins a cluster, it is never 
removed and fused with other objects belonging to 
some other cluster.   
 The hierarchical scheme can be supervised, 
meaning the number of clusters obtained are 
determined by the user, or unsupervised, meaning 
the number of clusters are a function of a distance 
threshold value.   
 Partitioning clustering techniques do not require 
that the allocation of an object to a cluster to be 
irrevocable.  Thus objects may be reallocated if their 
initial assignments were indeed inaccurate.   
 Two algorithms, the nearest neighbor or single 
linkage method (hierarchical) and K-mean method 
(partitioning), were used in this analysis.  Equations 
for these methods were taken from Dillon and 
Goldstein (1984). 
 

 
Nearest neighbor method 
For the nearest neighbor method, the similarity 
between joints is based on distance measurements. 
Joint orientation can be expressed as a vector in 
spherical coordinates.  The arc length between the 
two vectors in a spherical coordinate is adopted as 
the first variable.  The second variable is the 
distance between each pair of joints in the direction 
down the bore hole.  
 An example of a measure of distance between 
objects in p dimensional space is defined by the 
Minkowsi metric: 
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Where dij denotes the similarity distance between 
two objects i and j, X is the array of physical 
distances (arc length and spacing in our example).  
If we set r=2, then we get the familiar Euclidean 
distance between object i and j: 
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Table 1 Clustering results of 6 objects, based on the number of clusters desired. 
 
Clusters 
desired 

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

1 cluster 1,2,3,4,5,6      
2 clusters  1,2,3,4,5 6     
3 clusters  1,2 3,4,5 6    
4 clusters  1,2 3 4,5 6   
5 clusters  1,2 3 4 5 6  
6 clusters  1 2 3 4 5 6 
 
To implement this, a matrix of Euclidean distances 
is created, where the element in the ith row and jth 
column represents the similarity distance between 
objects i and j induced by the above Euclidean 
formula.  
 During the first stage, the two objects, for 
example i and j, with the smallest Euclidean 
distance are merged to form a cluster, since they are 
closest.  The smaller Euclidean distance between i 
or j and all other objects are retained in the matrix, 
and the matrix is reduced by one row and one 
column.  The array is now one whose elements are 
inter-individual and inter-group (object cluster) 
distances.  
 The above procedures are repeated to form new 
clusters and further reduce the matrix.  In the end 
the last two clusters would be fused to form a single 
cluster containing all the individual objects.  The 
analysis can be terminated when a pre-specified 
number of clusters have been identified, or by a 
threshold value of Euclidean distance between 
clusters, above which no further mergers are 
allowed. 
 Fig. 6 shows a dendrogram illustrating an 
example of nearest neighbor method summarizing 
the various stages at which merging are made. The 
numbers in horizontal axis represent the individual 
objects and the vertical axis represents the element 
values in an Euclidean distance matrix.  
 First individuals 1 and 2 are merged to form a 
cluster, group-individual 1-2. Then individuals 4 
and 5 are merged to form a cluster, group-individual 
4-5.  Next inter-individual 3 and group-individual 4-
5 are merged to form a cluster, group-individual 3-
4-5.  Eventually, individual 6 and group individual 
1-2-3-4-5 fusion to form a single cluster containing 
all six individuals.   
 The individuals joined together first have the 
most similarity and individuals joined together last 
have least similarity.  In the above example 

individual 2 has most similarity with 1, while 6 has 
least similarity with 1.  Depending on the number of 
clusters selected or determined by the threshold 
value of the Euclidean distance, we will get the 
grouping as shown in Table 1. 
 

 
Fig. 6. Nearest neighbor dendrogram of the six 
objects of table 1. 
 
K-mean method 
The K-mean method uses a supervised classification 
for which the number of the final clusters is 
specified in advance.  
For this method, three variables (discontinuity dip, 
dip direction and position down the bore hole) are 
considered in the analysis.  Each joint is expressed 
in a cartesian coordinates in a cylindrical space. The 
relationships between the cartesian coordinates 
(x,y,z)  and the dip direction (β), dip angle (α), and 
position are as following: 
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Fig. 7a (top):  Traditional stereonet of contrived 
joint normal (pole) data.   Fig. 7b (middle): Three 
dimensional stereonet with three joint sets clustered 
by multivariate analysis.  Fig. 7c (bottom):  Two 
dimensional view of Fig. 7b, also showing 
multivariate clustering. 
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Assume we have n discontinuities and have the 
above three attributes (variables) of each 
discontinuity.  We denote by x(i, j) the value of the 
ith joint on the jth attribute; i=1, 2, …, n and j= 1, 2, 
3.  The mean of the jth variable in the lth cluster will 
be denoted by x(l, j), and the number of joints 
belonging to the lth cluster by n(l).  Based upon the 
above notation the Euclidean distance between the 
ith joint and the center of the mean of lth cluster can 
be expressed as:  
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where p is the number of dimensions, in this case 
three. 
 The specific procedures for implementation are 
summarized as follows: 
 
1. To form the initial clusters, we denote the sum of 

all the variables for joint i as Sum(i) and denote 
the maximum and minimum values of Sum(i) by 
Max and Min respectively.  The initial clusters 
are  formed by considering object (joint) i as 
part of the lth cluster,  where l is the cluster 
number: 
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 where k is the number of clusters desired. 
2. Calculate the arithmetic mean of the three 

attributes of each initial cluster.  
3. Calculate the Euclidean distance between the ith 

joint and lth cluster as given by equation 6, in 
which p=3. 

4. Check to see if any joint should be re-allocated 
from one cluster to another by considering the 
error reduction function: 
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Fig. 8.  Example of data from a 27 m hole in a granodiorite gneiss.  Numbers indicate joint clusters; R is a 
random joint. 
 
 
2.3 Example 

Fig. 8 illustrates an example from a 27m vertical 
bore hole in a weakly foliated gneiss with well 
developed jointing.  This illustrates two dominant 
jointing clusters (1 and 2) found at different depths. 
The argument could be made that the two represent 
different geological domains.  Two other minor 
clusters appear, as well as a random joint. 
 

3 DISCUSSION 

The concept of multivariate analysis of bore hole 
data is a much overdue innovation.  This paper 
presents a new method to cluster joints using both 
orientation and spacing data that promises to be 
automatic, fast and cost efficient. 

Further research will be done on other clustering 
methods.  It will also need to address the use of 
other attributes such as joint roughness into the 

analysis, and the automatic determination of 
geological domains.  The issues of bore hole 
orientation bias, and analyzing data from multiple 
bore holes will also need to be addressed. 
 

4 ACKNOWLEDGEMENTS 

The authors would like to acknowledge the 
University of Missouri System Research Board for 
funding of this research. 
 

5 REFERENCES 

Baecher, G. B. 1983.  Statistical analysis of rock 
mass fracturing. Journal of Mathematical 
Geology 15 (2): 329-347. 

 
Dershowitz, W. & Einstein, H., 1988.  

Characterizing rock joint geometry with joint 



system models.  Rock Mechanics and Rock 
Engineering 21:21-51. 

 
Dershowitz, W., LaPoint, P., & Cladouhos, T., 

1998.  Derivation of fracture spatial pattern 
parameters from bore hole data. Int. J. Rock 
Mech. & Min. SCI. 35:4-5, Paper No. 134. 

 
Dillon, W. R. & Goldstein, M. 1984.   Multivariate 

analysis methods and applications. John Wiley 
& Sons, New York.  

 
Hammah, R. E., & Curran, J. H.  Fuzzy Cluster 

algorithm for the automatic identification of 
joint sets. Int. J. Rock Mech. & Min. SCI. 
35:889-905. 

 
Hudson, J. A. 1989.  Rock mechanics principles in 

engineering practice. Butterworths, London. 
 
Hudson, J. A. & Priest, S. D. 1983.  Discontinuity 

frequency in rock masses. Int. J. Rock Mech. & 
Min. SCI. 20:73-89. 

Hudson, J. A. & Priest, S. D. 1979.  Discontinuity 
and rock mass geometry. Int. J. Rock Mech. & 
Min. SCI. 16:339-362. 

 
ISRM Commission on Standardization of Laboratory 

and Field Tests 1978.  Suggested methods for 
the quantitative description of discontinuities in 
rock masses. Int. J. Rock Mech. & Min. 
Sci.15:319-368. 

 
Kulatilake, P. H. S. W. & Wu, T. H. 1986.  Relation 

between discontinuity size and trace length.  
27th U. S. Symposium on Rock Mechanics:130-
133. 

 
Kulatilake, P. S. H. W. & Wu T. H. 1984.  

Estimation of mean trace length of 
discontinuities.  Rock Mechanics and Rock 
Engineering 17:215-232. 

 
Priest, S. D. 1994. Discontinuity Analysis for Rock 

Engineering.  Chapman & Hall, London. 
 


