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ABSTRACT: This paper describes a new and cost effective method of andyzing hard rock discontinuities
from oriented core bore hole data. This dgorithm uses multivariate cluser anadyss to group discontinuities
(joints) into sets based on orientation and spatial postion (gpacing) dong the bore hole, and to display the
data in a three dimensiona <ereonet.  Although drift or surface exposure mapping data alows better
characterization of discontinuities, bore hole data is often more readily available, because of lower costs. In
addition, bore hole data may be more ussful because bore holes can be drilled to the exact location where the
ground needs to be characterized and bore hole daa is usudly avalable ealier in the life cycde of an
engineering project.

4. The amount of effort needed to excavate the
rock (do we need to use explosives, and if s0

1INTRODUCTION

1.1 Discontinuities in Rock Mechanics

The characterization of the structure of rock masses
iS an important congderaion in engineering projects
in rock. Often it is the nature of the discontinuities
(oints, fractures, bedding planes, faults, and other
breeks in the continuity of the rock) and not of the
intact rock that governs the mechanicd and
hydrologicd behavior of the rock mass (Fig. 1).

With a few exceptions, most of the rock masses that

engineers dedl with are influenced to some extent or

another by discontinuities.

In rock enginering andyss it is necessxy to
undersand the mechanicd and  hydrological
behavior of rock masses in order to predict such
aspects of desgn as.

1. The dability of a rock mass (how likdly is it that
the rock will fall, and how catagtrophic will the
failure be?);

2. The degree of remediaion and/or
support required (how do we make it safe?);

3. The expected amount of deformation as a result
of applied dructurd loads (how much
movement do we have to design for?);

ground

how much?);

5. The degree and effect of water infiltration (how
do we keep it dry?).

While we understand much about the mechanica
properties of intact, solid rock, our understanding of
discontinuous rock is sgnificantly less developed.

Fig. 1. The discontinuous nature of rock masses.



Fig. 2. Scribed oriented core.

1.2 Analysis of Discontinuities

State of the Art

The current date of the art in ground (discontinuity)
characterization in  engineering projects consdts
gther of drilling and logging the discontinuities in
oriented core (Fig. 2) or from bore hole video, or
trid excavations and mapping of the discontinuities
on the wadls and backs of the excavation. In
andyzing the discontinuities, the atributes of the
individud  discontinuities must  be  identified,
measured or characterized, and input into a
predictive modd. Methodologies for this have been
proposed and or are being used by Kulatilake and
Wu (1984; 1986), Baecher (1983), Dershowitz and
Eingein (1988), Hudson and Priest (1979; 1983),
Priest (1994), etc. Moddls in the past have tended to
be physca or eectricd andogs, and now are
predominantly numerica, but dso utilize empirica
rock mass classfication and prediction systems.
The dtributes for discontinuity cdassfication are
described in ISRM 1981, and shown figuratively by
Hudson (1989) (Fig. 3). Theseinclude:

1. The discontinuity attitude (orientation),

2. The digance between adjacent discontinuities
(spacing),

3. The phydcd extent  of
(persistence),

4. The surface characteridics of the discontinuities
(roughness, drength, minerdizetion  and
dteration)

5. Thefilling materid (filling or infilling).

discontinuities

These parameters dl in someway dffect the
mechanicd and hydrogeologicd behavior of the
rock.

The advantage of mapping a two dimensond
exposure is of course that more and better data can
be obtained, which can ultimatey result in better
characterization. The advantage of oriented bore
hole core logging or bore hole video logging is thet

it is much more cost effective, and is capable of
exploring much deeper, and much larger volumes of
ground, an important congderation when the ground
conditions are not homogeneous, or far below the
ground surface.

In andyds, the joints are typicdly clustered or
contoured into groups or sets based on ther
orientation only. At that point the other attributes
may be summarized for each joint s=t.

In redity it may not be just orientation that is
common among members of a set.  Spacing or
persstence or roughness may aso play a role, and
over the length of a long bore hole, orientations may
not cuser very wel. Do discontinuities group
conveniently into sets based on more than
orientation done? Can we condder clustering of
sts udng orientation and other dtributes in a
clugtering dgorithm?

Actud Practice

These above basc discontinuity atributes are more
or less routindy measured during drilling and drift

mapping programs in  dgnificant  enginearing
projects.
In more routine dStudtions, such as  mining

development or projects with limited budgets, drift
mapping is not done because of the extra costs and
time involved. Drilling is however routindy carried
out, and it tekes rdativey little extra effort to
measure a wide range of characteristic properties
from recovered oriented drill core Such
measurement and andyss is, however, not routine,
because of the lack of useful tools which can make
use of the measured data and incorporate it into a
modd with practicd value.

Fig. 3. Schematic of a bore hole intersecting a rock
mass, (Hudson, 1989).



2MULTIVARIATE ANALYSIS

2.1 Concept

This paper describes a new approach for the analysis
of bore hole data Rather then congdering
paameters such as orientation, gpacing, infilling,
wal rock drength, roughness and minerdization
individudly, a multivariate goproach is used. The
conventiond andyss is done by grouping the
discontinuities into families or se#s based on
orientation only, and then trying to genedize the
other atributes to these groupings. ~ While this
goproach works wel in dtuations where the
cdugeing of joints into orientation families is very
obvious, this approach bresks down under typica
conditions where the geologic structures vary, or the
in dtu dress fidd rotates, especidly in long bore
holes. Under these conditions, the joints often do
not cluser wdl into families and the geologicd
engineer must dat meking abitrary decisons on
how to interpret this datar  Consequently, the
avalable data is typicdly underutilized, or not even
collected in thefirg place.

The new gpproach is designed around building a
new multivariate-clugtering dgorithm. Hammah and
Curran (1998) have wused joint roughness in
clusering joint sets. Dershowitz, e d. (1998) have
used discontinuity orientation and spacing to define
Sructura domains.

The current approach uses both spatia data
(postion dong the length of the bore hole), and
gpherical  orientation data to identify joint sets.
Future development will condder  secondary
atributions such as roughness, wal grength, fillings
and moisture condition, etc. The eventua god is to
automaticdly identify and characterize geologicd
domains through which the bore hole passes.

Condder the lower hemisphere stereo plot of Fig.
43, showing four poles to discontinuity planes. If
we plot each joint normal on a separate stereonet
Fig 4b, and dstack them on top of each other (Fig.
4c), we get a“three dimensond stereonet” (Fig. 5)

Fig. 7 shows a lower hemisphere stereo plot using a
contrived data s&t, using multivariate clustering.

Fig. 4a (top right) A lower hemisphere dereonet
with four joint normas (poles), each pole ostensbly
from a different depth dong an imaginay vertica
bore hole.

DO
O

()
O

S34

Fig. 4b (middle) Each joint norma is plotted on an
individud dgereonet.  4c (bottom) The individud
dereonets are  dacked, with  each  spacing
proportiona to the spacings between discontinuities
in the bore hole. S1,2 is the spacing between
discontinuity 1 and 2.
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Fig. 5. “Three dimensona stereonet”, showing the example from Fig. 4.

2.2 Cluster Analysis Methods

The basis of the grouping of discontinuities in Fg. 5
is cduder andyss. The two basc categories of

cudering  techniques ae  hierarcchicd  and
partitioning. One of the primay features
distinguishing hierarchicd techniques from

patitioning techniques is that the dlocaion of an
object (discontinuity or joint) to a cdude is
irrevocable in the hierarchica technique. That
means once an object joins a cluder, it is never
removed and fused with other objects belonging to
some other clugter.

The hierarcchicd scheme can be supervised,
meaning the number of cluders obtaned ae
determined by the user, or unsupervised, meaning
the number of cugters are a function of a distance
threshold value.

Partitioning clustering techniques do not require
that the dlocation of an object to a cluster to be
irrevocable. Thus objects may be redlocated if their
initial assgnments were indeed inaccurate.

Two dgorithms, the nearest neighbor or single
linkege method (hierarchicd) and K-mean method
(partitioning), were usad in this andyss.  Equations
for these methods were taken from Dillon and
Goldstein (1984).

Nearest neighbor method

For the nearet neighbor method, the gmilaity
between joints is based on distance measurements.
Joint orientation can be expressed as a vector in
spherica coordinates. The ac length between the
two vectors in a spherical coordinate is adopted as
the firsa vaiable  The second vaiable is the
distance between each pair of joints in the direction
down the bore hole.

An example of a measure of distance between
objects in p dimensond space is defined by the
Minkows metric:
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Where dj denotes the smilarity distance between
two objects i and j, X is the aray of physca
distances (arc length and spacing in our example).
If we st r=2, then we get the familiar Euclidean
distance between object i and j:
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Table 1 Clustering results of 6 objects, based on the number of clusters desired.

Clusters Cluster 1 Cluster 2 Cluser 3 Cluster 4 Cluster 5 Cluster 6
desired

lcluster 1,2,3,45,6

2clusers 1,2,34,5 6

3clusters 1,2 3,45 6

4clusers 1,2 3 45 6

S5clusers 1,2 3 4 5 6

6clusers 1 2 3 4 5 6

To implement this a matrix of Euclidean distances
is created, where the dement in the ith row and jth
column represents the gmilarity distance  between
objects i and j induced by the above Euclidean
formula

During the firs d<age, the two objects, for
exanple i and j, with the gmdlet Euclidean
distance are merged to form a clugter, since they are
closest. The smdler Euclidean distance between i
or j and dl other objects are retained in the matrix,
and the matrix is reduced by one row and one
column. The aray is now one whose dements are
inter-individua  and inter-group  (object  cluster)
distances.

The above procedures are repeated to form new
clusers and further reduce the matrix. In the end
the last two clusters would be fused to form a single
cduger contaning dl the individud objects The
andyss can be terminated when a pre-specified
number of clusers have been identified, or by a
threshold vaue of Euclidean distance between
clusers, aove which no further megers ae
alowed.

Fig. 6 shows a dendrogram illudraing an
exanple of nearet neighbor method summarizing
the various stages & which merging are made. The
numbers in horizontd axis represent the individud
objects and the vertical axis represents the eement
values in an Euclidean distance matrix.

Firg individuds 1 and 2 ae merged to form a
cluser, group-individua 1-2. Then individuds 4
and 5 are merged to form a cluster, group-individud
4-5. Next inter-individud 3 and group-individud 4
5 are merged to form a cluster, group-individud 3-
4-5. Eventudly, individud 6 and group individud
1-2-3-4-5 fudon to form a sngle cluser contaning
dl sx individuds.

The individuds joined together fird have the
most Smilarity and individuds joined together last
have least gmilarity. In the &bove example

individua 2 has mogt amilaity with 1, while 6 has
leest amilarity with 1.  Depending on the number of
clusers sdected or determined by the threshold
vdue of the Eudidean digance, we will get the
grouping as shown in Table 1.

aon -
[0)
o
C
8
[75)
5 70 -
C
@®©
)
o
S
L 1.0

‘r
7]

I 2 K] s
Number of objects

Fig. 6. Nearest neighbor dendrogram of the six
objects of table 1.

K -mean method

The K-mean method uses a supervised classfication
for which the number of the find dudes is
specified in advance.

For this method, three variadbles (discontinuity dip,
dip direction and postion down the bore hole) are
conddered in the andyss.  Each joint is expressed
in a catesan coordinates in a cylindrica space. The
relationships between the cartesan coordinates
(x,y,2 and the dip direction @), dip angle @), and
position are as following:
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Fig. 7a (top): Traditional <Sereonet of contrived
joint norma (pole) data  Fig. 7b (middle): Three
dimensona dereonet with three joint sets clustered
by multivarigte andyss. Fg. 7c (bottom): Two
dimensond view of Fg 7b, dso showing
multivariate dugtering.

x=tan(b/2)" dna 3)
y=tan(b/2)" cosa 4
z = - position 5

Assume we have n discontinuities and have the
above three attributes (variables) of each
discontinuity. We denote by x(i, j) the vaue of the
ith joint on the [" attribute; i=1, 2, ..., nand j= 1, 2,
3. The mean of the [ variable in the " duster will
be denoted by x(I, j), and the number of joints
belonging to the Ith cluster by n(l). Based upon the
above notation the Euclidean distance between the
ith joint and the center of the mean of " duster can
be expressed as.
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where p is the number of dimendons, in this case
three.

The specific procedures for implementation are
summarized asfollows

1. To form the initid clugters, we denote the sum of
dl the variables for joint i as Sum(i) and denote
the maximum and minimum vaues of Sum(i) by
Max and Min respectivdly. The initid cuders
ae formed by consdering object (joint) i as
pat of the '™ duster, where | is the cluster
number:

* (sum(i) - Min)
(Max - Min)

. ek )
= (i) & +14 ™
e u

where k isthe number of clusters desired.

2. Cdculate the aithmetic mean of the three
atributes of each initid clugter.

3. Cdculate the Euclidean distance between the it"
joint and Ith cluser as given by eguation 6, in
which p=3.

4. Check to see if any joint should be re-dlocated
from one cluser to another by consdering the
error reduction function:

_n)DG,1N)*  ndi)DG,!Gi)*
R0t =0 +1 n(l (i) - 1 ©
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Fig. 8. Example of data from a 27 m hole in a granodiorite gneiss. Numbers indicate joint clusers, R is a

random joint.

2.3 Example

Fig. 8 illudrates an example from a 27m verticd
bore hole in a weskly folialed gneiss with wal
devdoped jointing.  This illudrates two dominant
jointing clusters (1 and 2) found at different depths.
The argument could be made that the two epresent
different geologicd domains. Two other minor
clusters appear, aswell asarandom joint.

3 DISCUSSION

The concept of multivariate andysis of bore hole
daa is a much overdue innovation. This paper
presents a new method to cluster joints using both
orientation and spacing data that promises to be
automatic, fast and codt efficient.

Further research will be done on other clustering
methods. It will dso need to address the use of
other attributes such as joint roughness into the

andyss, and the automatic determination of
geologicd domains.  The issues of bore hole
orientation bias, and andyzing daa from multiple
bore holeswill aso need to be addressed.
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