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A B S T R A C T

Seismic azimuthal anisotropy beneath the transitional region between the southeastern Tibetan Plateau and the
Indochina Peninsula, an area in which the fast orientation of mantle anisotropy changes to dominantly E-W from
mostly N-S on the plateau at the north, is quantified using splitting of the SKS, SKKS, and PKS phases. Among the
50 stations with one or more splitting measurements, 22 possess an azimuthal coverage that is adequate for the
identification and characterization of complex anisotropy. The resulting splitting parameters from 15 such
stations exhibit systematic back azimuthal variations with a 90° periodicity, which is consistent with a two-
layered anisotropy model. The upper layer parameters are consistent with crustal anisotropy measurements
obtained independently based on the sinusoidal moveout of P-to-S conversions from the Moho, with the fast
orientations being mostly parallel to major shear zones. The lower layer fast orientations and the fast orienta-
tions at stations with azimuthally invariant splitting parameters are mostly E-W, which is significantly different
from the dominantly N-S trend of the surface expression of major structural fabrics in the area. They are also
inconsistent with the absolute plate motion directions. When combined with results from seismic tomography
and focal mechanism solutions, the observed azimuthal anisotropy can be adequately explained by the move-
ment of the lithosphere relative to the underlain asthenosphere, most likely associated with the westward
rollback of the subducted Indian Plate.

1. Introduction

To explain the uplifting and evolution of the Tibetan Plateau, which
is generally regarded as the consequence of subduction of the Indian
lithosphere beneath the Eurasian Plate, distinct geodynamic models
such as tectonic escape (Tapponnier, 1982) and upper or lower crustal
thickening (England and Houseman, 1986; Bird, 1991; Royden et al.,
1997; Chen et al., 2017) have been proposed over the past several
decades (Yin and Harrison, 2000). Another consequence of the con-
tinental convergence is the extrusion of crustal and mantle materials
from the plateau toward the southeast into adjacent regions
(Tapponnier, 1982; Royden et al., 1997; Liu et al., 2004; Gan et al.,
2007; Zhang et al., 2010; Searle et al., 2011; Huang et al., 2015a), al-
though this model remains debated (e.g., England and Molnar, 1990).
Numerous studies have suggested remarkable influences of the con-
vergence on far-field deformations such as the volcanoes in Hainan and

Vietnam, and the spreading of the South China Sea (e.g., Li et al., 2008;
Huang et al., 2015c). The influences are evident from the extensive
strike-slip faults and the Global Positioning System (GPS) velocities
(Gan et al., 2007), both reflecting the deformation field of the Earth's
surface. The deformation field at depth, however, is less understood and
can be characterized by shear wave splitting analyses, as detailed
below.

The study area (Fig. 1) is the transitional zone between the south-
eastern Tibetan Plateau and the Indochina Peninsula. It mainly com-
poses of three tectonic provinces (Searle, 2006; Wang et al., 2010),
including the Shan-Thai Block of the Indochina Peninsula west of the
Red River Fault, the Yangtze Block east of the Xianshuihe-Xiaojiang
Fault, and the southernmost region of the Qiangtang Block of the Ti-
betan Plateau between the two faults. Recent seismic tomography stu-
dies reveal a slab-like high velocity zone extending to the mantle
transition zone or the upper part of the lower mantle, and interpret it as

https://doi.org/10.1016/j.tecto.2018.09.013
Received 17 May 2018; Received in revised form 19 September 2018; Accepted 21 September 2018

* Corresponding author.
E-mail address: sgao@mst.edu (S.S. Gao).

Tectonophysics 747–748 (2018) 68–78

Available online 27 September 2018
0040-1951/ © 2018 Elsevier B.V. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00401951
https://www.elsevier.com/locate/tecto
https://doi.org/10.1016/j.tecto.2018.09.013
https://doi.org/10.1016/j.tecto.2018.09.013
mailto:sgao@mst.edu
https://doi.org/10.1016/j.tecto.2018.09.013
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tecto.2018.09.013&domain=pdf


the subducted Indian Plate (Li et al., 2008; Wei et al., 2012; Huang
et al., 2015a). To the west of the Red River Fault, a large low velocity
zone is detected in the upper mantle of the Shan-Thai Block, and is
inferred to as a consequence of either the dehydration (Lei et al., 2009;
Wei et al., 2012) or mantle processes associated with the westward
rollback of the Indian Plate (Li et al., 2008), which is consistent with the
absence of thrust faulting mechanisms (Zhao et al., 2013a).

1.1. Simple and complex seismic anisotropy

The mantle deformation and mantle flow fields associated with the
subduction and tectonic extrusion can be readily studied by measuring
the orientation and magnitude of seismic azimuthal anisotropy (Zhang
and Karato, 1995), which is quantified by shear wave splitting (SWS)
analysis using teleseismic SKS, SKKS, and PKS waves (collectively called
XKS hereafter; Silver and Chan, 1991; Gao et al., 1994, 2010; Wu et al.,
2015; Cherie et al., 2016). When a shear wave travels through a
transversely isotropic medium which is the simplest form of azimuthal
anisotropy, it splits into two shear waves with orthogonal polarization
orientations. The splitting parameters, including the polarization or-
ientation of the fast wave (ϕ) and the splitting delay time between the
fast and slow waves (δt), convey essential information on the orienta-
tion and strength of azimuthal anisotropy, respectively. In the upper
mantle, anisotropy is generally regarded as the consequence of lattice
preferred orientation of anisotropic minerals, primarily olivine (Zhang
and Karato, 1995). For A-type olivine fabric that is the most abundant
type in the continental upper mantle (Ben Ismail and Mainprice, 1998),
shear strain induced by mantle flow field aligns the a axis of olivine to
be parallel to the flow direction. When the lithosphere experiences
vertically coherent compression, the resulting ϕ is normal to the max-
imum compressional stress (Silver and Chan, 1991; Wang et al., 2008).

The vast majority of SWS parameters, including those in the study
area (Fig. 2), were measured under the assumption of simple aniso-
tropy, i.e., a single layer of transverse isotropy with a horizontal axis of
symmetry. Such an ideal scenario results in individual splitting para-
meters that are invariant to the arriving azimuth (the back azimuth or
BAZ) of the events, and consequently, station-averaged splitting para-
meters can adequately represent the anisotropic properties. Any sig-
nificant departure from the characteristics of simple anisotropy leads to
complex anisotropy, for which a model consisting of two anisotropic

layers with horizontal axes of symmetry is the most common form
(Silver and Savage, 1994). Except for the special situation when the fast
orientations of the two layers are parallel or orthogonal to each other,
the individual splitting parameters from such a two-layered model
show a systematic variation against the BAZ with a 90° periodicity
(Silver and Savage, 1994).

The azimuthal dependence of the individual splitting parameter
suggests that station-averaged splitting parameters cannot objectively
reflect the actual anisotropic properties. Unfortunately, as detailed in
Liu and Gao (2013) and demonstrated by Cherie et al. (2016) and other
studies, it is usually difficult to reliably judge the existence of complex
anisotropy due to the limited BAZ coverage (especially when only the
SKS phase is used), frequently leading to controversial conclusions
about the geodynamic implications of splitting measurements (e.g.,
Wang et al., 2008 and Huang et al., 2015b for the SE Tibetan Plateau).
Other P-to-S converted phases at the core mantle boundary such as
SKKS and PKS are essential to improve the azimuthal coverage, espe-
cially for SWS studies in East and Southeast Asia where the majority of
the SKS events are from a narrow BAZ band (Fig. 3).

1.2. Previous shear wave splitting measurements and objectives of the
present study

To investigate mantle deformation presumably associated with the
Indo-Tibetan collision, numerous SWS studies have been conducted on
the southeastern Tibetan Plateau and adjacent regions (e.g., Flesch
et al., 2005; Chang et al., 2006; Lev et al., 2006; Sol et al., 2007; Wang
et al., 2008; Shi et al., 2012; Wang et al., 2013; Zhao et al., 2013b;
Huang et al., 2015b). Most of the studies used only SKS events that
mainly situated in the western Pacific subduction zones spanning a
narrow BAZ range of∼ 110°–140° (Fig. 3). A few studies included some
SKKS events (e.g., Lev et al., 2006; Shi et al., 2012; Huang et al.,
2015b), but only used events with an epicentral distance less than 140°
and thus excluded the majority of usable SKKS events that were mostly
from the western coastal area of South America that is farther than 140°
(Fig. 3). Except for a single attempt to quantify complex anisotropy at a
few stations with a short recording duration of 13months (Lev et al.,
2006), to our knowledge, no systematic investigations on the azimuthal
variations of shear wave splitting parameters for the purpose of iden-
tifying and quantifying complex anisotropy have been conducted in the
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Fig. 1. Map of the study area showing major faults (Styron et al., 2010) and seismic stations (red triangles) used in the study. The green circle indicates the
Tengchong volcano. The inset map shows the study area.
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study area.
The area-averaged splitting parameters from previous studies de-

monstrate a sudden change of the fast orientations from mostly N-S to
dominantly E-W at about ∼ 26°N (Fig. 2). The area-averaged splitting
parameters are computed by taking the circular (for ϕ) and simple (for
δt) means over previous splitting measurements (Lev et al., 2006; Sol
et al., 2007; Wang et al., 2008; Shi et al., 2012; Wang et al., 2013; Zhao
et al., 2013b; Huang et al., 2015b) at stations within consecutive cir-
cular bins with a radius of 1°. The distance between the center of
neighboring bins is 1°.

A number of mechanisms for this intriguing observation have been
proposed, including the transition of deformation from simple shear in
SE Tibetan Plateau to pure shear in adjacent regions (e.g., Wang et al.,
2008), lateral variations in lithospheric rheology (e.g., Lev et al., 2006),
influences from distant subduction processes (Lev et al., 2006; Huang

et al., 2015b), and different origins of seismic anisotropy with a
dominant lithospheric source in the SE Tibetan Plateau and a significant
contribution from the asthenosphere in the adjacent regions (Sol et al.,
2007; Huang et al., 2015b). In addition, Yao et al. (2010) suggest a
significant contribution from crustal anisotropy to the observed XKS
splittings on the Plateau, and a mostly upper mantle source off the
Plateau.

The assumption of simple anisotropy utilized by most previous
studies in the area dominated by E-W fast orientations neglects poten-
tially significant crustal contributions to the observed XKS splitting
(Sun et al., 2012). More importantly, it may not objectively reveal
dynamic processes that led to the observed anisotropy. In this study, we
conduct shear wave splitting analyses beneath the southeastern Tibetan
Plateau and adjacent regions to investigate crustal and mantle aniso-
tropic structures using teleseismic SKS, SKKS, and PKS phases, as well
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Fig. 2. The red bars show area-averaged (in radius=1° cir-
cular bins) previous shear wave splitting measurements (Lev
et al., 2006; Sol et al., 2007; Wang et al., 2008; Shi et al.,
2012; Wang et al., 2013; Zhao et al., 2013b; Huang et al.,
2015b) obtained using the measurements from stations that
are located in the bins defined with a radius of 1°. The or-
ientation of the bars represents the fast orientation, and the
length is proportional to the delay time (see scale bars in the
upper right corner). Purple and blue arrows represent the
absolute plate motion from the NNR-MORVEL56 (Argus
et al., 2011) and HS3-NUVEL1A (Gripp and Gordon, 2002)
models, respectively. The black triangles denote the locations
of the stations. In the study area the APM rate is 22–24mm/
yr, and the orientation is 15–20° from the E-W direction for
both models.
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Fig. 3. (a) An azimuthal equidistant projection map centered
at the study area showing earthquakes (circles) that provided
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as P-to-S converted waves from the Moho, for the purpose of providing
new constraints on crustal and mantle deformation associated with the
continental convergence along the Himalayas, as well as the role that
the subducted Indian Plate played on modulating mantle flow beneath
the SE Tibetan Plateau and the northern Indochina Peninsula.

2. Data and methods

The broadband XKS seismic data set used in the study was recorded
by 50 stations (Fig. 1), among which 45 were provided by the Data
Management Centre of China National Seismic Network at the Institute
of Geophysics, China Earthquake Administration for the recording
period of 2007–2011 (Zheng et al., 2010). Data from stations MC21,
MC23, MC24 (recording period: 2003–2004), KMI (1996–2017), and
SLV (2008–2017) were obtained from the Incorporated Research In-
stitutions for Seismology (IRIS) Data Management Center (DMC). The
epicentral distance range for selecting the XKS events is 120° to 180° for
PKS, 95° to 180° for SKKS, and 83° to 180° for SKS. The cut-off mag-
nitude is 5.6 for events with a focal depth≤ 100 km, and 5.5 for deeper
events (Liu and Gao, 2013). Totally 291 teleseismic events that resulted
in at least one well-defined SWS measurement were used in the study
(Fig. 3a).

The XKS splitting parameters presented here were measured and
ranked using the systematic approach of Liu and Gao (2013), which is
based on the transverse energy minimization method (Silver and Chan,
1991). Previous studies show that among the several SWS measuring
techniques, the transverse energy minimization approach is the most
stable even when significant noise is present (Vecsey et al., 2008; Liu
and Gao, 2013; Kong et al., 2015a). All the teleseismic events were
band-pass filtered in the frequency band of 0.04–0.5 Hz to enhance the
signal-to-noise ratio (SNR). The time window for SWS analysis was
initially set as 5 s before and 20 s after the predicted XKS arrivals based
on the IASP91 Earth model. An objective ranking procedure is then
applied to rank the measurements as ‘ A’ (good), ‘ B’ (fair), ‘ C’ (poor)
and ‘ N’ (null) based on the SNR on the original and corrected radial and
transverse components (Liu et al., 2008; Liu and Gao, 2013). All the
measurements were manually checked to ensure reliability, and if ne-
cessary, the time window, band-pass filtering parameters, and the rank
were manually adjusted. Fig. 4 shows three measurements recorded by
one of the stations, at which azimuthally dependent splitting para-
meters are evident.

3. Results

A total of 1119 pairs of well-defined splitting parameters with a
rank of ‘ A’ or ‘ B’ were obtained at 50 individual stations, among which
115 are PKS, 343 are SKKS, and 661 are SKS measurements (Fig. 5).
Because all stations with high quality XKS signals on the radial com-
ponent have at least one A or B measurement, null measurements are
not reported here as they simply reflect events with a BAZ that is similar
to the fast or slow orientation (Silver and Chan, 1991; Liu and Gao,
2013).

As shown in Fig. 3, the SKS events were mostly from the western
Pacific subduction zones with a BAZ range of 110°–140°, and the SKKS
events were dominantly from the western coast of South America with
an epicentral distance range of 135°–180° spanning a BAZ range of
240°–360°. The PKS and SKKS measurements, which were excluded by
most previous SWS studies, significantly improved the back azimuthal
coverage, making it possible for the determination of the existence or
absence of complex anisotropy which is characterized by systematic
azimuthal variations of the individual splitting parameters.

3.1. Categorization of measurements based on BAZ coverage and variation

The back azimuthal variations of ϕ can be observed from the sig-
nificant difference in the resulting splitting parameters obtained using

the SKS event, which are mainly from the BAZ range of 110°–140°, and
those from the SKKS events, which have a BAZ range of 240° to 360°
(Fig. 6), suggesting the presence of complex anisotropy. Complex ani-
sotropy is also unambiguously revealed by the significant difference of
the observed splitting parameters from events with different back azi-
muths (see Fig. 4 for examples). The existence or absence of complex
anisotropy can be determined based on the back azimuthal variation of
the individual splitting parameters. Obviously, such a determination
requires an adequate BAZ coverage.

After visual inspection of the BAZ coverage for each of the stations,
we found that among the 50 stations, 22 have adequate BAZ coverage
in the modulo-90° domain, among which 7 stations show azimuthally
invariant splitting parameters (Fig. 7). The splitting parameters ob-
tained at the other 15 stations with adequate BAZ coverage are char-
acterized by systematic back azimuthal variations with a 90° periodi-
city, which is consistent with the presence of a two-layered anisotropy
model (Silver and Savage, 1994). Note that one of the stations (TEN), is
a combination of 4 nearby stations (CZS, MZT, RHT, and XHT) in the
vicinity of the Tengchong volcano. The BAZ coverage of the remaining
stations is inadequate to ensure a reliable determination of the com-
plexity of the underlain anisotropy structure. Because several studies
have been conducted in the same area under the assumption of per-
vasive simple anisotropy (Fig. 2), those stations with an inadequate BAZ
coverage are not discussed further.

3.2. Station-averaged splitting parameters

For the 7 stations with azimuthally invariant splitting parameters,
which suggest the presence of simple anisotropy, station-averaged re-
sults can be adequately utilized to represent the anisotropy structure.
All the stations are located at the southeastern corner of the study area
and show dominantly E-W fast orientations (87°–95°) with splitting
times ranging from 0.92 to 1.2 s (Fig. 7).

3.3. Characterization of two-layered anisotropy

The upper and lower layer splitting parameters associated with a
two-layered anisotropy model can be obtained by applying the grid-
search technique proposed by Silver and Savage (1994), which is ba-
sically a quadruple nesting loop traversing all the candidate pairs of
lower layer fast orientation (ϕL), lower layer splitting time (δtL), upper
layer fast orientation (ϕU), and upper layer splitting time (δtU).

As demonstrated by previous complex anisotropy studies (e.g., Gao
et al., 2010; Hammond et al., 2014), the resulting optimal two-layered
splitting parameters are intrinsically non-unique. For instance, at sta-
tion ATD located in the Afar depression, the individual splitting mea-
surements can be fitted equally well by two different sets of parameters
(Gao et al., 2010; Hammond et al., 2014). Similar to the inversion of
many other types of geophysical data, in this study we take a Bayesian
approach to reduce the non-uniqueness by providing additional con-
straints. Several different types of constraints have been applied in
previous studies. The first is to fix the ϕ or δt (or both) for the upper
layer as the same as the splitting parameters for the crust (e.g., Wu
et al., 2015), by assuming that the upper layer anisotropy is entirely
from the crust. This approach requires accurately determined crustal
splitting parameters, which are not available for many of the stations in
the study area. The second type of constraints assumes that the ϕ of the
lower layer is the same as the absolute plate motion (APM) direction
(Yang et al., 2014). This assumption might not be viable for slow-
moving plates such as Eurasia and for areas with expected flow systems
driven by continental collision or slab subduction, such as the study
area (Wei et al., 2012). The third approach combines the splitting
measurements at nearby stations, and searches for the optimal splitting
parameters of the two layers (Cherie et al., 2016). Two-layered struc-
ture at individual stations are then grid-searched within given ranges of
the optimal splitting parameters found using the combined data set.
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One of the potential problems related to this approach is that ambi-
guities may remain in the optimal splitting parameters from the com-
bined data set, due to the intrinsic non-uniqueness of the two-layer
parameter search.

In this study we introduce another approach for providing con-
straints on the grid-searching of two-layered parameters. As demon-
strated in the synthetic models (Fig. 8), when the δt values of the two
layers are significantly different, the station-averaged fast orientation
and splitting time are similar to those of the layer with the larger δt. The
existence of two anisotropic layers with significantly different splitting
times can be diagnosed by the following two characteristics on the
variation of the individual ϕ measurements with the BAZ (in the
modulo-90° domain). First, the ϕ values vary gradually within a wide
BAZ range (e.g., from 12° to about 85° in Fig. 8c), and second, a large
change of the ϕ values occurs in a narrow BAZ range (e.g., from 0° to
12° in Fig. 8c). The azimuthal variations of the fast orientations shown
in Fig. 9 for most of the stations demonstrate the two characteristics,
and thus are consistent with the existence of two layers with sig-
nificantly different splitting times. Consequently, under the assumption

that the lower layer contributes more of the splitting than the upper
layer, an assumption that we found is necessary to reduce the ambiguity
of the resulting two layer models, we use the weighted circular mean of
the fast orientations, ϕw, to constrain the search range of ϕL as (ϕw-30 °,
ϕw+30°) with an increment of 1°. The search range of δtL is set as (δtw-
0.5, δtw+0.5) with a step of 0.1 s, where δtw is the weighted mean of the
individual δt measurements. To further reduce ambiguities, in this
study we assume that δtU is no larger than half of δtL. The weighting
factor in calculating ϕw and δtw is the azimuthally dependent data
weighting, 1/n, where n is the number of measurements in a 5°-wide
azimuthal bin, for avoiding dominance by events from narrow BAZ
bands with a relatively large number of events.

For each candidate set of two pairs of splitting parameters, a
weighted misfit is computed between the observed and calculated in-
dividual splitting parameters (Gao and Liu, 2009), i.e.,
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the observed and calculated fast orientations, N is the number of
splitting parameter pairs, w1= 0.5 and w2= 0.5 are the weighting
factors for the ϕ and δtmeasurements, respectively, and w3 is 1/n that is
designed to correct for the uneven azimuthal distribution of measure-
ments.

The resulting upper and lower layer splitting parameters (Table S1)
for all two-layered stations are shown in Fig. 9. The ϕ measurements of
the upper layer are mostly SE-NW in the northern Shan-Thai Block, and
N-S in the Yangtze Block which are consistent with the strike of major
shear zones, while the lower layer is dominantly E-W (Fig. 10). The
resulting two-layered anisotropic structure is in general agreement with
the results from P-wave anisotropic tomography studies (Wei et al.,

2013; Wei et al., 2016), which reveal SE-NW oriented fast axis in the
top 60 km, but E-W axis in the depth range of 60 to 200 km beneath the
study area. Similar depth-varying anisotropy pattern is also found in
surface wave tomography studies (e.g., Yao et al., 2010; Pandey et al.,
2015). Relative to SWS analysis, the tomography-based results have
higher vertical but poorer lateral resolution.

4. Discussion

4.1. Upper layer anisotropy and crustal contribution

Mineral physics experiments show that mica-or-amphibole-bearing
metamorphic rocks collected from the study area are significantly ani-
sotropic, and are suggested to be the source of crustal anisotropy with
anomalously large splitting times of up to 1.3 s (Ji et al., 2015; Kong
et al., 2016). In order to characterize crustal anisotropy and isolate
mantle contributions to the results from XKS splitting, crustal
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Fig. 5. Resulting Quality A and B PKS (blue bars), SKKS (green bars), and SKS (red bars) splitting parameters plotted above the ray-piercing points at 200 km depth.
Blue triangles are stations.
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Fig. 6. Rose diagrams of fast orientations obtained using the SKS (red) and SKKS (green) phases.
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anisotropy parameters are computed based on the sinusoidal moveout
of P-to-S conversions from the Moho (Fig. 11) (Rumpker et al., 2014), a
technique that has been applied to investigate crustal anisotropic
structures in the eastern Tibetan Plateau and adjacent areas (Kong
et al., 2016) and elsewhere. In this study, teleseismic events with a BAZ
in the range of 0–180°, which contains the vast majority of the radial
receiver functions, are utilized to compute crustal anisotropy

parameters. Data selection and processing procedure and criteria are
identical to those used by Kong et al. (2016). A total of 15 crustal an-
isotropy measurements are obtained (Fig. 10 and Table S2) including
one null measurement (δt<0.1 s) observed at station SLV. The crustal
anisotropy measurements are in general agreement with those obtained
by Chen et al. (2013), Sun et al. (2012), and Cai et al. (2016), except
that the δt values in this study are mostly larger than those in Chen et al.
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Fig. 9. Azimuthal variations of splitting parameters for 15 two-layered stations. The gray lines are the predicted splitting parameters calculated using the optimal
splitting parameters for the two layers and an uniform frequency of 0.25 Hz.
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(2013). They are also similar to the fast orientations inferred from the
Love-Rayleigh phase speed difference (Xie et al., 2017). The smaller δt
values might be partially attributed to the application of the multiple-
event stacking technique used by some of the previous studies, which
may underestimate the δt (Kong et al., 2015b).

The resulting fast orientations of crustal anisotropy are mostly
consistent with the upper layer ϕ from XKS splitting (Fig. 10), and the
crustal δt values are comparable to the upper layer δt. Comparison
using 8 stations that have both upper layer and crustal anisotropy
measurements shows that the averaged differences of ϕ and δt are 16.4°
and 0.06 s, respectively. Such consistencies suggest that the observed
upper layer anisotropy is mostly from the crust and can be attributed to
crustal fabrics deformed by compressional folding and shear (Ji et al.,
2015; Kong et al., 2016).

4.2. Anisotropy induced by mantle flow

The majority of the study area is characterized by a thin lithosphere
with a thickness of 60–100 km (Fig. 10; (Pasyanos et al., 2014)) and a
Moho depth of 40–70 km (Sun et al., 2012). The fast orientations of the
lower layer and single-layered anisotropy are inconsistent with the
strikes of the major shear zones that are mostly SE-NW (e.g., the Red
River Fault) or SSW-NNE (e.g., the Xianshuihe-Xiaojiang Fault Zone).
The small thickness of the mantle lithosphere and the inconsistencies
between the fast orientations and the strike directions suggest that the
lower layer and single-layered anisotropy are mainly in the astheno-
sphere, or the rheologically transitional layer between the lithosphere
and asthenosphere (e.g., Reed et al., 2017; Yang et al., 2017).

As shown in Figs. 5 and 10, the fast orientations of the lower layer
and those from the 7 single-layered stations are dominantly E-W, which
differs by 15–20° from the fast orientations predicted based on the HS3-
NUVEL-1A (Gripp and Gordon, 2002) and NNR-MORVEL56 (Argus
et al., 2011) APM models. In the study area, the plate motion rate for
both models (22–24mm/yr) is lower than the threshold value of
30mm/yr, below which the APM has insignificant influence on seismic
azimuthal anisotropy (Debayle and Ricard, 2013). In addition, even if
APM is a major contributor to the observed anisotropy in most areas of
East Asia, the presence of a slab (Wei et al., 2012) may modulate the
flow system and result in a complicated flow pattern which is not ob-
served in the study area. Therefore, while the possibility that the

observed anisotropy primarily originates from the APM cannot be
completely ruled out, we postulate that APM may not be the dom-
inating process.

Recent focal mechanism and tomography studies (Fig. 12; Wei et al.,
2012) suggest that the eastward subduction of the Indian Plate is
probably inactive (Rao and Kumar, 1999; Kundu and Gahalaut, 2012)
and is undergoing slab retreat (Li et al., 2008). If this is true, the fast
orientations of the lower layer and single-layered anisotropy can be
adequately explained by a mantle flow system moving toward the
trench induced by the westward retreat and rollback of the subducted
Indian Plate along the Burmese arc (Fig. 12). Such a mechanism has
recently been invoked to explain the mostly E-W fast orientations ob-
served on the Indochina Peninsula (Yu et al., 2018) and is suggested by
geodynamic modeling (Sternai et al., 2014).

5. Conclusions

This first systematic investigation of complex azimuthal anisotropy
beneath the transitional region between the SE Tibetan Plateau and the
Indochina Peninsula reveals spatially widespread existence of a two-
layered anisotropy structure. The splitting parameters for the upper
layer are comparable to those obtained for the crust, and can thus be
attributed to rock fabrics with vertical foliation planes created by
crustal compression and shearing. The lower layer of anisotropy as well
as the simple anisotropic structure beneath the stations with azimuth-
ally invariant splitting parameters are most likely from simple shear in
the upper asthenosphere. The observed mantle anisotropy is consistent
with a flow system induced by the westward rollback of the subducted
Indian Plate.
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Supplementary data to this article can be found online at https://
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