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Crustal shear wave velocity structure beneath the Malawi and Luangwa Rift Zones (MRZ and LRZ, respectively)
and adjacent regions in southern Africa is imaged using fundamental mode Rayleigh waves recorded by 31
SAFARI (Seismic Arrays for African Rift Initiation) stations. Dispersion measurements estimated from empirical
Green's functions are used to construct 2-D phase velocity maps for periods between 5 and 28 s. The resulting
Rayleigh wave phase velocities demonstrate significant lateral variations and are in general agreement with
known geological features and tectonic units within the study area. Subsequently, we invert Rayleigh wave
phase velocity dispersion curves to construct a 3-D shear wave velocity model. Beneath the MRZ and LRZ, low
velocity anomalies are found in the upper-most crust, probably reflecting the sedimentary cover. The mid-
crust of the MRZ is characterized by an ~3.7% low velocity anomaly, which cannot be adequately explained by
higher than normal temperatures alone. Instead, other factors such as magmatic intrusion, partial melting, and
fluid-filled deep crustal faults might also play a role. Thinning of the crust of a few kilometers beneath the rifts
is revealed by the inversion. A compilation of crustal thicknesses and velocities beneath the world's major conti-
nental rifts suggests that both the MRZ and LRZ are in the category of rifts beneath which the crust has not been
sufficiently thinned to produce widespread syn-rifting volcanisms.

© 2018 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Developed between the Proterozoic Irumide Belt and Pan-African
South Irumide Belt (SIB), the Permo-Triassic Luangwa Rift Zone (LRZ;
Fig. 1) is considered to be a section of the southwestern branch of the
East African Rift System (EARS; Banks et al., 1995; Fritz et al., 2013).
To the east of the LRZ lies the N-S oriented Malawi Rift Zone (MRZ),
which is the southward extension of the non-volcanic western branch
of the EARS and resides within the SIB and the Mozambique Belt
(Ebinger et al., 1987; Craig et al., 2011; Lao-Davila et al., 2015). The ear-
liest sediments (older than 4.0 Ma) in the MRZ are fluviatile deposits in
the northern part of the rift (Flannery and Rosendahl, 1990; Betzler and
Ring, 1995). The thickness of the sedimentary layers decreases gradu-
ally toward the south, from up to 3 km at the northern part of the rift
to near zero at the southern endwhere the rift isfloored by Precambrian
rocks (Specht and Rosendahl, 1989). The MRZ is the youngest segment
of the western branch of the EARS, initiated at about 14 million years
ago (Roberts et al., 2012). Volcanism in the MRZ is absent except for
na Research. Published by Elsevier B.
the Rungwe volcanic province located at the northern tip of the rift
(Ebinger et al., 1989).

Relative to most of the more mature rifts, young and incipient rifts
such as the MRZ have been inadequately studied, and consequently,
the mechanisms responsible for the initiation and early-stage develop-
ment of continental rifts remain enigmatic. One of the proposed rifting
models involves the active upwelling of thermal materials from the
lower mantle to the upper mantle and crust, i.e., the active rifting
model (e.g., Sengor and Burke, 1978). However, for the MRZ, a recent
study (Reed et al., 2016) of the topography of the mantle transition
zone discontinuities suggests the absence of thermal anomalies in the
vicinity of themantle transition zone, an observation that is inconsistent
with the active riftingmodel. A lack of rifting-relatedmantle flow is also
inferred from shear wave splitting analysis (Reed et al., 2017), which is
expected to be characterized by either rift-parallel or orthogonal fast
orientations (Gao et al., 1994, 1997). The measurements are also incon-
sistentwith the existence of an activemantle plume. For an active man-
tle plume beneath a stationary (relative to the underneath mantle)
lithosphere, the expected flow field and thus the fast orientations
should have a radial pattern centered at the plume stem (Druken
et al., 2013), and for a plume beneath a moving plate, the pattern is ex-
pected to be parabolic (Walker et al., 2001). The fast orientations
V. All rights reserved.
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Fig. 1.Topographicmapof the study region showing tectonic provinces and seismic stationsused in this study (orange triangles). The gray lines represent 101 ray paths of station pairs that
provide reliable phase velocity dispersion measurements at the period of 28 s. The red dashed lines depict the boundaries of major orogenic belts within the study area. The two black
dashed lines, A–A′ and B–B′, are cross-sections shown in Figs. 8 and 9, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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observed in the vicinity of the MRZ and LRZ are mostly parallel to the
absolute plate motion direction determined in the no-net-rotation
reference frame, and thus there is no clear rifting or plume related
flow field (Reed et al., 2017).

In the study area, the crustal thickness revealed in the global scale
CRUST1.0 model (Laske et al., 2013), which has a coarse 1° by 1° hori-
zontal resolution, varies from aminimum value of ~32 km at the central
part of the MRZ to a maximum value of ~45 km in the southern part of
the SIB. Higher resolution imaging of crustal velocity structure and
crustal thickness variations can provide valuable constraints on the
rifting models. Kim et al. (2009) estimated that the crustal thickness
ranges from 34 ± 2 to 38 ± 2 km beneath the southeastern end of the
Rukwa rift, which is located north of the study area, using teleseismic
receiver functions. By applying the receiver function method and joint
inversion of receiver functions and surfacewave phase and group veloc-
ities, Kachingwe et al. (2015) estimated that themean crustal thickness
beneath the Irumide Belt and SIB is about 42 and 38 km, respectively.
Tugume et al. (2012) calculated the average crustal thickness of the
Mozambique Belt and found a value of ~38 km using receiver functions,
and Borrego et al. (2018) utilized the receiver function and joint inver-
sion analyses and suggested that the crustal thickness ranges from 38 to
42 km beneath the northern end of the Malawi rift.

Comparing with traditional surface-wave tomography methods for
imaging crustal velocity structures, ambient noise tomography (ANT)
has an improved inversion resolution by utilizing higher frequency sur-
face waves, and by reducing the effects of the random occurrence of the
sources and the inhomogeneous distribution of the receivers (e.g., Nolet
and Dahlen, 2000; Spetzler et al., 2002; Ritzwoller et al., 2002; Shapiro
and Campillo, 2004; Shapiro et al., 2005). The velocity structure at the
northern tip of the MRZ has been revealed by Accardo et al. (2017)
through ambient-noise and Rayleigh wave phase velocities. This study
expands the study area to the central and southern part of the MRZ
and is the first ANT study of the combined region of the MRZ and LRZ.
In this study, we obtain phase velocity maps at various periods by
inverting phase velocity dispersion measurements from empirical
Green's functions (EGFs). Additionally, to more directly image 3-D
crustal structures, the phase velocities are inverted to construct a
shear wave velocity model. Resulting crustal velocities and estimated
crustal thicknesses beneath the MRZ and LRZ are then compared with
those measured in other major continental rifts to reveal their relation-
ship with the presence or absence of syn-rifting volcanisms.

2. Data and methods

2.1. Data

The broadband seismic data used in the study were recorded by 31
portable seismic stations, which are part of the Seismic Arrays for
African Rift Initiation (SAFARI) experiment conducted between mid-
2012 and mid-2014 (Gao et al., 2013). The data set has been archived
at the Incorporated Research Institutions for Seismology (IRIS) Data
Management Center (DMC) and is publicly accessible.

Equipped with Quanterra Q330 digitizers and Guralp CMG-3T 120 s
sensors recording at a continuous rate of 50 Hz, the portable stations
were located within the area of 29°E–39°E, and 16.5°S–10°S, along
two profiles. The E-W profile is ~900 km long consisting of 21 stations
in Zambia, Malawi, and Mozambique. It traversed both the MRZ and
LRZ, approximately forming a right angle with the rifts (Fig. 1). The N-
S profile is about 600 km long with 10 stations installed along the west-
ern shoulder of the MRZ except for the southernmost several stations
which were approximately located along the rift axis (Fig. 1). We re-
quested continuous vertical-component waveform data from the DMC
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for the period of 1/1/2013 to 12/31/2013, eachwith a length of one day.
The seismograms are resampled to 5 samples per second for the study.

2.2. Methods

The ANT technique has been discussed in detail by numerous studies
(Weaver and Lobkis, 2004; Weaver, 2005; Shapiro and Campillo, 2004;
Shapiro et al., 2005; Sabra et al., 2005). It is generally believed that am-
bient noise source would be more efficient in generating Rayleigh
waves than Love waves. Additionally, uncertainties of phase velocity
measurements are much smaller than those of group velocity measure-
ments, and phase velocities have the ability to constrain deeper velocity
structures than group velocities at the same periods (Lin et al., 2008).
Therefore, in this study, we utilize the vertical component of cross-
correlations of ambient seismic noise to retrieve Rayleigh wave
phase velocity dispersion curves. The processing procedure that we
use here includes four main steps: (1) preprocessing for single
station, (2) cross-correlations and temporal stacking, (3) phase velocity
dispersion measurements, and (4) phase velocity variations from EGFs
and inversion for shear wave velocity structures.

2.2.1. Single station preprocessing
The primary purpose for single station preprocessing is to extract

broadband ambient seismic noise. The procedure we use here is similar
to that discussed in Bensen et al. (2007), and is briefly described below.
After the mean, linear trend, and the instrumental response of the daily
noise time series are removed, a second-order Butterworth filter in the
frequency range of 0.025–0.5 Hz is applied. Subsequently, temporal
normalization, which is regarded as the most important step in the
preprocessing stage, is applied to reduce the effects from earthquakes,
instrumental irregularities, and nonstationary noise around the stations.
Spectral whitening is then applied to produce broader-band ambient
noise signals by reducing broad imbalances in single-station spectra
and to prevent degradation caused by persistent nearlymonochromatic
sources (Bensen et al., 2007).

2.2.2. Cross-correlation and temporal stacking
The next step is to compute cross-correlation series and perform

temporal stacking. A daily cross-correlation between every station pair
is performed to obtain a two-sided EGF. The total number of possible
cross-correlation series is N = n(n − 1)/2, where n is the number of
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Fig. 2. (a) Bouguer gravity anomalies extracted from the World Gravity Map (WGM2012). Th
filtered cross-correlation functions between station W01PD and the other stations.
stations. Since there are 31 stations in total, 465 possible inter-station
cross-correlation series are produced.

After the daily cross-correlations between all the station pairs are
obtained, all the daily cross-correlation series for each of the station
pairs are stacked to obtain a stacked cross-correlation series. The causal
and acausal signals are symmetrically averaged to enhance the signal-
to-noise ratio (SNR). Due to the heterogeneous distribution of the
noise sources, the resulting cross-correlation functions are slightly
asymmetrical. Finally, by taking a negative time derivative of the
stacked cross-correlation series, the Rayleigh wave EGFs are obtained.
Fig. 2 shows raypaths and cross-correlation series between station
W01PD and all the other stations.

2.2.3. Phase velocity dispersion measurements
Based on a modified far-field approximation and an image transfor-

mation analysis technique (Yao et al., 2005, 2006, 2010), phase velocity
dispersion curves are estimated from the EGFs. A quality control proce-
dure is applied prior to computation of the dispersion curves to remove
unreliable cross-correlation series, which are mainly caused by 1) the
distance between the two stations in a station pair being either too
long or too short, or 2) the quality of seismic data being not high enough.

Accordingly, we impose three selection criteria in order to obtain re-
liable dispersionmeasurements and to reject those contaminated by in-
terference between the causal and acausal signals (Bensen et al., 2007).
First, following the far-field approximation approach, the distance be-
tween the two stations in a given station pair should be at least three
times of the longest wavelength, which is the product of the cut-off pe-
riod and the corresponding phase velocity. In this study, the longest pe-
riod of the dispersionmeasurements that we produced is 28 s, resulting
in a minimum acceptable inter-station distance of 336 km for a typical
phase velocity of 4 km/s (300measurements are discarded by this crite-
rion). Second, we calculate the SNR for every cross-correlation series
and exclude phase velocity measurements with a SNR smaller than 5.
The SNR here is defined as the ratio of the maximum amplitude within
the signal window to the root-mean-square amplitude in a window of
150 s long following the signal window. Third, we perform clustering
analysis to reject station pairs with large uncertainties in dispersion
measurements (e.g., Ritzwoller and Levshin, 1998). Based on a similar
cluster analysis in Bensen et al. (2007), we retain the phase velocity
dispersion curves that are similar to a global model (Shapiro and
Ritzwoller, 2002), and discard the ones with substantial velocity differ-
ence from the model prediction.
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Fig. 3. Examples of Rayleigh wave phase velocity dispersion curves. (a) 29 phase velocity dispersion curves for ray-paths traversing theMRZ (red) and the corresponding averaged phase
velocity curve (black). The error bar shows one standard deviation. (b) Same as (a) but for 21 ray-paths that avoid theMRZ (green curves). (c) Comparison of the averaged phase velocity
curves (red: traversing MRZ; green: off MRZ). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Because EGF-derived phase velocity measurements are only robust
enough in the period range of 5 to 28 s and become unreliable outside
this range (Yao et al., 2006), measurements at periods shorter than 5 s
and longer than 28 s are not used for generating the phase velocity
maps in the next step. Examples of Rayleigh wave phase velocity mea-
surements along different ray paths are shown in Fig. 3.

2.2.4. Phase velocity maps and inversion for shear wave velocities
Phase velocity measurements obtained from the previous step are

inverted with the technique of Tarantola and Valette (1982) and
Tarantola andNercessian (1984) to obtain Rayleighwave phase velocity
maps for periods between 5 and 28 swith an interval of 1 s, a horizontal
grid dimension of 0.12° × 0.12°, and a sampling step of 0.03°. In order to
only display the area with relatively reliable phase velocities, the study
area is meshed by squares of 0.12° × 0.12°, and only grids with at least
one ray path are retained.

To create a 3-D shearwave velocitymodel of the study area, we next
invert the phase velocity dispersion curve at each of themodel nodes to
obtain depth distribution of shear wave velocities at the nodes from the
surface to 40 km depth by adopting the surf96 computer program
(Herrmann and Ammon, 2004). For constructing the initial model for
the inversion, the layer thickness is fixed to be 1 km over the depth
range, and initial crustal thicknesses are taken from the CRUST1.0 global
model with the thickest crust of 45 km at the central part of the MRZ,
the thinnest crust of 32 km at the northern part of the MRZ, and an av-
erage value of about 40 km. Densities and velocities are extracted from
the IASP91 Earth model (Kennett and Engdahl, 1991). Low velocities in
the top layers of the initialmodel are assigned to areas covered bywater
or a layer of loose sediments. The final 3-D shear wave velocity model is
determined by integrating all the resulting shear velocity profiles.

3. Results

3.1. Phase velocity tomography

Based on the criteria discussed in Section 2.2.3, a total of 120 disper-
sion measurements are eventually selected from the 465 possible sta-
tion pairs, and 2-D phase velocity maps with 0.12° × 0.12° spatial
grids are constructed using the dispersion measurements. Fig. 4 shows
phase velocity maps at the period of 5, 16, 20, and 28 s. The number of
ray paths is 120, 119, 117, and 101, respectively, so that only minor
changes for the ray-path coverages could be observed. Phase velocity
sensitivity kernels for the above periods are calculated based on the
IASP91 Earth model (Fig. 5a). The depth with the maximum sensitivity
is approximately 6, 20, 28, and 40 km, respectively, for the above pe-
riods. Sensitivity kernels are also calculated based on the IASP91
model with slight modifications to reflect loose sedimentary layers
(Fig. 5b). The maximum sensitivity for the period of 5 s moves from
6 km to 7 km deep, and no influence of the low velocity layer is found
for longer periods.

At the period of 5 s, the low phase velocities found in the MRZ and
LRZ most likely reflect loose sediments and water, while relatively
high velocities are revealed in the SIB between the two rifts and the
Mozambique Belt east of the MRZ (Fig. 4). The low (relative to the
SIB) velocities beneath both rifts persist at the period of 16 s. Continuing
downward, at 20 s, velocities beneath the LRZ become comparable to
those of the SIB, and low velocities beneath the MRZ are still present.
At 28 s, the polarity of relative velocity contrast between the rifts and
the SIB reverses. For all the periods, phase velocities beneath the SIB
are comparable to those observed in other stable cratonic areas such
as Central North America (e.g., Shen et al., 2013a, 2013b, and Shen and
Ritzwoller, 2016).

3.2. Resolution test

To test the resolution of the resulting spatial distribution of phase ve-
locities at different periods, standard synthetic checkerboard tests are
conducted (Fig. 6). For each of the periods, the input velocity model is
composed of alternating positive and negative velocity anomalies with
a 5% magnitude relative to 4 km/s in 1.5° × 1.5° blocks (Fig. 6a).

Fig. 6b–e shows the recovered velocity models for the periods of 5,
16, 20, and 28 s obtained using the same ray-path coverage and inver-
sion parameters as those used for inverting the observed data. The syn-
thetic inversion results indicate that the reconstruction of the input
model at different periods is understandably the best along the E-W
and N-S trending arrays, because this is where crossing rays are dense
(Fig. 1), and is generally poor in the off-profile areas due to limited ray
coverage. Consequently, in the followingwe focus our discussions on re-
sults along the two profiles.

3.3. Shear wave velocity structures

According to the sensitivity kernels and initial models (Fig. 5), the
phase velocity of Rayleigh waves is most sensitive to shear velocities
(Vs) at the depth of about 1/3 of the wavelength (Yang et al., 2010). To
more realistically reflect the velocity distribution at a given depth, we
further invert phase velocities to obtain shear wave velocities and con-
struct Vs maps at different depth using the procedure of Herrmann and
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Ammon (2004). The results are shown on 2-D horizontal slices (Fig. 7)
and vertical profiles (Figs. 8 and 9). Vs variationswith depth are also ex-
tracted at several representative locations to facilitate comparison
(Figs. 8c and 9c).

Similar to the phase velocities (Fig. 4), the resulting shear velocities
in the uppermost crust (0–5 km) beneath theMRZ are the lowest in the
study area. Relative to the SIB, the observed Vs values are about 3.5%
lower in the top 15 km beneath the MRZ (Fig. 8c). On the N-S trending
vertical profile (Fig. 9b), the central MRZ demonstrates the lowest ve-
locities in the top 15 km.

At greater depth in the mid-crust, low Vs anomalies are visible be-
neath the MRZ from horizontal velocity maps at depth slices of 20 and
28 km (Fig. 7b and c). The E-W trending profile (Fig. 8c) indicates that
the MRZ is delineated by low velocities to about 30 km depth relative
to the SIB, and in the depth range of 15–30 km, the southern and central
MRZ have similar velocities (Fig. 9c).

In the depth range of 30 to 40 km, high Vs values relative to the SIB
are pervasively found beneath the MRZ (Figs. 7 and 8). For instance,
on the horizontal velocity slice at 40 km (Fig. 7d), Vs underneath the
MRZ reaches 4.30 km/s. The sudden velocity increase with depth can
also be observed on the extracted vertical velocity profiles for the MRZ
(Figs. 8c and 9c). These velocities are higher than the globally-
averaged lower-crustal shear wave velocity (3.75 km/s in the IASP91
Earth model).
Due to the available ray path coverage, only the central part of the
LRZ has reliable Vs determinations. In the upper crust, the central LRZ
is characterized by pronounced low-velocity anomalies relative to the
SIB (Fig. 7a). On the vertical profiles, the Vs observations in the LRZ
(Fig. 8c) are slightly higher than those beneath the MRZ for the depth
range of 0–20 km, and are lower than those of the SIB from the surface
to about 30 km. Similar to the MRZ, high velocities are revealed on the
depth slice of 40 km depth beneath the LRZ (Fig. 7d).

4. Discussion

4.1. Causes of low crustal velocities beneath the MRZ and LRZ

The negativeVs anomalies observed in the top several kilometers be-
neath the MRZ (Fig. 7a) most likely reflect the 0.7 kmwater and the up
to 3 km loose sedimentary layers (Betzler and Ring, 1995; Flannery and
Rosendahl, 1990). Similarly, loose sediments in the LRZ may be respon-
sible for the observed low velocities in the uppermost several kilome-
ters beneath the LRZ, which is underlain by a layer of Permo-Triassic
clastic sediments (Banks et al., 1995) and is characterized by negative
Bouguer gravity anomalies (Fig. 2a). Another contributing factor for
the low velocities beneath the MRZ and LRZ is deep penetrating faults
(e.g., Yu et al., 2015 for the Okavango Rift), whose existence is suggested
by the frequent occurrence of earthquakes.
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Higher than normal crustal temperatures can also contribute to the
observed low seismic velocities in the crust. The relatively high heat
flow values (about 77 mW m−2) and the numerous hot springs in the
MRZ (Gondwe et al., 2012; Njinju et al., 2015) are indicative of a higher
than normal crustal temperature. Ifwe assume that the temperature be-
neath the SIB at 25 km depth is 350 °C, which is comparable to that of a
typical cratonic area (Blackwell, 1971), the observed heat flow value of
67mWm−2 in the SIB (Njinju et al., 2015) suggests an average thermal
conductivity of 4.79Wm−1 °C−1, a value that is typical for crustal rocks
(Birch and Clark, 1940). Interpreting seismic velocity within the crust in
terms of temperature is inherently complicated owing to non-linear re-
lationships between composition, density, and temperature for crustal
rocks. Therefore, a certain degree of uncertainty exists in the crustal
temperatures.
The Vs beneath the MRZ at the depth of 25 km is about 0.13 km/s
slower than that beneath the SIB (Fig. 8). Under the assumption that
the observed low Vs anomaly in the MRZ is entirely thermally induced,
the scaling relationship ∂Vs/T = 0.35 ms−1 K−1 (Sumino and
Anderson, 1982) results in a temperature anomaly of about 370 °C
(and thus a temperature of 720 °C) relative to the SIB (beneath which
the assumed temperature is 350 °C at 25 km depth). Applying a thermal
conductivity of 4.79Wm−1 °C−1 estimated above and a temperature of
720 °C at the depth of 25 kmbeneath theMRZ, the anticipated heatflow
in the MRZ would be as high as 138 mW m−2, which is about
60 mWm−2 higher than the observed value. Therefore, in spite of pos-
sible uncertainties in the assumed temperatures and temperature-
velocity relationship, the large difference between the observed and
predicted heat flow values suggests that temperature anomalies alone
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are insufficient to produce the observed low crustal velocities beneath
the MRZ. Other factors, such as fluid-filled deep penetrating faults, par-
tial melting, and possibly magmatic intrusion (Fagereng, 2013), may
also be important factors for the observed low velocities.

4.2. Crustal thickness beneath the rifts

For typical stable cratonic areas, Vs ranges from 3.9 to 4.2 km/s
in the lower crust, and over 4.2 km/s in the uppermost mantle
(e.g., Schulte-Pelkum et al., 2017; Shen et al., 2013a, 2013b; Shen
and Ritzwoller, 2016). Based on these values, in the following we
estimate the crustal thickness (H) from the resulting velocity models
by considering Vs values of over 4.2 km/s as the velocities in the up-
permost mantle, with the understanding that for a given location,
the Vs measurements obtained using ANT represent the average
over a vertical distance, and consequently, there is an uncertainty of a
few kilometers in the estimated H results. Using a different threshold
Vs value would result in different absolute crustal thicknesses, but the
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Fig. 7. Horizontal shear wave velocity slices at different depths. (a) 5 km. (b) 20 km. (c) 28 km. (d) 40 km.
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relative magnitude of the topography of the Moho should not change
significantly.

The Vs slicemap at the depth of 40 km (Fig. 7d) shows velocities that
are higher than 4.2 km/s beneath most of the MRZ and the central part
of the LRZ, suggesting that crustal thickness beneath the rifts is b40 km.
To obtain more detailed estimates of the crustal thickness, we plot Vs

slices at the depths of 32–38 km with an interval of 2 km (Fig. 10). At
the depth of 38 km (Fig. 10d), shear wave velocities beneath the LRZ
are lower than 4.2 km/s, which, when combined with the results at
the depth of 40 km (Fig. 7d), indicate that the crustal thickness beneath
the LRZ is most likely between 38 and 40 km. Shear wave velocities
beneath the MRZ reach about 4.2 km/s at the depth of 38 km but are
lower than 4.2 km/s at the depth of 36 km, implying that the Moho
depth is between 36 and 38 km beneath most part of the MRZ, except
for the section between 13°S and 15°S latitudes, where a thicker crust
with a depth between 38 and 40 km is present. Note that the accuracy
of the estimated crustal thickness variations is dependent on uncer-
tainties in crustal velocities. The resulting crustal thinning beneath
both rifts is significantly smaller than the Tanganyika Rift that is also
part of the western branch of the EARS, beneath which ~20% thinning
is suggested (Hodgson et al., 2017).

The mean shear wave velocities beneath the SIB and the
Mozambique Belt at the depth of 40 km are both lower than 4.2 km/s
(Figs. 7d and 8), indicating that H is N40 km beneath both orogenic
belts, a conclusion that is consistent with previous crustal thickness
observations obtained at several points using receiver functions
(Kachingwe et al., 2015).

4.3. Comparison with other continental rifts

To put the resultingH andVs observations obtained beneath theMRZ
and LRZ in a global context, we compare the H and Vs measurements at
the mid-crustal depth of 20 km, which is termed as Vs(20), observed
beneath theMRZ and LRZ with those obtained at major Cenozoic conti-
nental rift zones elsewhere (Fig. 11). The particular depth is at approx-
imately the middle of the crust and thus minimizes the influence of
velocity heterogeneities in the top-most layer, as well as magmatic un-
derplating or eclogitization that is common for the lower crust (Baird
et al., 1995). For a given rift, H and Vs(20) are taken at the location
where the crust is the thinnest. For the Baikal Rift Zone (BRZ), and
the central and southern segments of the Kenya Rift (CKR and SKR,
respectively), only P-wave velocities are available, and consequently,
Vs(20) is taken as Vp(20)/1.78 where Vp(20) is the P-wave velocity at
20 km depth, and 1.78 is the mean crustal Vp/Vs (Christensen, 1996).
For the Main Ethiopian Rift (MER), the results from the active-source
seismic study of Mackenzie et al. (2005) are used instead of those pro-
duced by other lower-resolution techniques (e.g., Kim et al., 2012).

The receiver function study at the BRZ (Gao et al., 2004) reported a
minimum crustal thickness of 35 km and suggested significant crustal
thinning relative to the neighboring Siberian Platform. In contrast, an



0

1

2

31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

A’A
(a)

A
lti

tu
de

 (k
m

) ZRMZRL SIB MB

0

5

10

15

20

25

30

35

40

31.0 31.5 32.0 32.5 33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0

#1 #2 #3 #4(b)

D
ep

th
 (k

m
)

Longitude (degree)

Shear wave velocity (km/s)
3.25 3.35 3.45 3.55 3.65 3.75 3.85 3.95 4.05 4.15 4.25

0

10

20

30

40

3.4 3.6 3.8 4.0 4.2

#1
#2
#3
#4

(c)

Shear wave velocity (km/s)

D
ep

th
 (k

m
)

Fig. 8. (a) Surface elevation andmajor geological features alongW-E Profile A–A′ shown in Fig. 1. Triangles are seismic stations. MB:Mozambique Belt. (b) Shear wave velocities along the
profile. (c) Depth variation of shear wave velocities extracted from the black dashed lines in (b).

195T. Wang et al. / Gondwana Research 67 (2019) 187–198
active-source seismic reflection survey (Thybo and Nielsen, 2009)
suggested the existence of a high-velocity layer at the depth range of
about 30–40 km and attributed it to magmatic intrusions into the
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lower crust that compensate the expected crustal thinning. Given the
inconsistencies between the two results, the BRZ is represented by
two points in Fig. 11, where BRZ01 is based on the active source seismic
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Fig. 10. Horizontal shear wave velocity slices at different depths. (a) 32 km. (b) 34 km. (c) 36 km. (d) 38 km.
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Fig. 11. A compilation of Moho depths and shear wave velocities at the depth of 20 km
beneath the world's major continental rift zones. CKR: Central Kenya Rift (Maguire et al.,
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legend, the reader is referred to the web version of this article.)
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study (Thybo and Nielsen, 2009), and the crustal thickness of BRZ02 is
from the receiver function study (Gao et al., 2004) while the corre-
sponding Vs(20) is taken from the active source seismic survey.

A positive correlation between H and Vs(20) is observed (Fig. 11),
suggesting that crustal extension leads to reduction of crustal velocities
that is attributable to temperature increase, existence of partialmelting,
magmatic intrusion, and the development of crustal scale boundary
faults. On the basis of the relationship shown in Fig. 11, the rifts can be
divided into three categories. Those in the first category (red ellipse;
Fig. 11) include theMER and the CKR and the SKR belonging to the east-
ern branch of the EARS. A 2-D wide-angle seismic reflection/refraction
modeling is utilized to calculate H and Vs(20) values beneath the MER.
Information of H and Vs(20) for the CKR and the SKR is obtained
from a combined analysis of seismic refraction and gravity data. The
crustal thickness beneath those rifts is 32 km or less, and Vs(20) is
≤3.74 km/s. A common feature of the rifts in this category is the perva-
sive presence of rifting-related volcanism (Keller et al., 1991). The
second category (gray ellipse; Fig. 11) includes the BRZ if we assume
that the Moho is beneath the high-velocity layer revealed by seismic
reflection data (Thybo and Nielsen, 2009). However, if we assume that
this layer is an underplated layer beneath the Moho, BRZ01, which is
an apparent outlier on the H-Vs(20) plot (Fig. 11), becomes consistent
with the rest of the rifts. The third category (green ellipse; Fig. 11)
includes the MRZ and LRZ investigated in this study, the Shanxi Rift
Zone (SRZ) in northern China, the Rio Grande Rift (RGR) in North
America, and the BRZ02 if the receiver function results (Gao et al.,
2004) are utilized. For the SRZ, H and Vs(20) measurements are
from the technique of ANT. Velocity information beneath the RGR is
from ANT method, while the H value is calculated by a receiver
function study. The crust thickness beneath these rifts is ≥34 km with
a Vs(20) that is higher than those in the first category. These rifts are
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characterized by an absence or limited volcanism (Logatchev and
Florensov, 1978; Keller et al., 1991).

Fig. 11 suggests that volcanism is closely related to themagnitude of
crustal thinning. Indeed, except for the Rungwe Volcanic Province at its
northern terminus, the MRZ is non-volcanic, indicating that the crust
beneath the young rift has not been thinned to the threshold value
belowwhich volcanismcan develop. This nevertheless does not exclude
the possibility of igneous intrusion into the lower or even the upper
crust, as evidenced by the lower than normal shear wave velocities ob-
served beneath the rift (Fig. 8).

Although it is tectonically inactive at the present time, the LRZ also
possesses a thinner crust relative to the surrounding area, and no rift-
related volcanic activities have been reported (Sarafian et al., 2018),
similarly suggesting that crustal extension responsible for creating the
Permo-Triassic rift did not reach the point of producing volcanism.
The lower than normal Vs in the upper crust observed beneath the LRZ
may suggest that crustal temperature remains higher than normal
over the past 250million years since the cessation of the rifting process,
which is unlikely. Alternatively, it may suggest reactivation of the failed
rift (Daly et al., 1989; Banks et al., 1995).

5. Conclusion

We implement ambient noise tomography to construct Rayleigh
wave phase velocity maps in the vicinity of the MRZ, LRZ, SIB, and por-
tions of the Mozambique and Irumide Belts in southern Africa using a
recently-recorded broadband seismic data set. Dispersion measure-
ments are extracted from these phase velocity maps and are inverted
to construct the first 3-D crustal shear wave velocity model for the
area, which reveals that relative to the neighboring areas, the MRZ
and LRZ are characterized by low velocity anomalies in the mid-crust,
probably as the results of a combination of multiple factors including
positive temperature anomaly, fluid-filled deep faults, partial melting,
and magmatic intrusion. Thinning of the crust beneath both the MRZ
and LRZ of a few km is inferred from the horizontal velocity slices. The
observed crustal thicknesses and seismic velocities beneath the non-
volcanic MRZ and LRZ are consistent with other non-volcanic continen-
tal rifts on Earth, and suggest that the crust has not been adequately
thinned to enable the development of syn-rifting volcanism.
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