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1 GENERAL OBJECTIVES 
 
a) To understand a one-dimensional experimental approximation. 

 
b) To understand the art of experimental measurement; in particular, the judicious 

use of data. 

c) To learn a practical method of measuring a convective heat transfer coefficient for 

a triangular fin using a statistical analysis. Particularly, the MATLAB API 

(application programmer’s interface) and the Levenberg–Marquardt algorithm to 

solve non-linear least squares problems. 

2 INTRODUCTION 
 

While fins are used everyday, it is tempting to believe that the simplified 

analysis presented in basic textbooks is not a “real world” description or that it 

is an unrealistic approximation of what might be observed in the laboratory.  

This experiment is designed to demonstrate that the fin concept is 

straightforward and accurate. 

  3  THEORY 

 
Consider a section of the one-dimensional triangular fin as in Figure 1. Note that 

the root is at a known temperature, T
W
, and that the ambient is at a known 

temperature, T∞. Heat is lost from the fin by convection, the rate of which is 

proportional to the heat transfer coefficient, h, of the slanted surface. Presuming 

conduction with-in the fin to be primarily considered one-dimensional (i.e., the z 

dimension is effectively infinite and the perimeter can be approximated as 2z 

since l  <<z), an energy balance for a differential slice of the fin takes the form (1)  
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where T(x) is the temperature of the fin at a particular dimensional position x (refer “Heat 
Transfer from Extended Surfaces” section in [1]). 

 

In order to simplify the expression, non-dimensionalize by introducing the following definitions: 
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Takingk andh to be constants, the expression simplifies to  
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Further defining 
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 , expression (2) simplifies to  
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on expanding: 

 

 

 
which may be recognized as a second-order ordinary differential equation with variable 

coefficients subject to the following boundary conditions: 

 

( 0)x finiteθ ∗ = =                                             (4) 

                                                          0( 1)xθ θ∗ = =                                                    (5)                                                                                     

 

where and the solution is  
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on the right hand side, I0 is the modified Bessel function of zeroth order.        

 

 

At this point, if all of the dimensional parameters (h, l , k, L, TW and T∞ ) were known, the 

axial temperature profile for the fin would be known as a function of x. Of the parameters  
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listed, h, the convection heat transfer coefficient is the most difficult to determine, 

especially since its value depends entirely on the flow field characteristics. The present 

experiment seeks to estimate h from measured quantities. 

This method is based upon a statistical analysis of dimensionless position, x∗ , and 

dimensionless temperature, θ data using equation (6). The selected method is referred to 

as the Method of Non-Linear Least Squares (NLLS) [4,5], a form of non-linear 

regression. Based upon the assumption that the errors in the experimental measurements 

follow a Gaussian distribution, the NLLS produces a unique value for the determined 

constants. That is, the magnitudes of the constants that are determined give the “most 

probable” form of the given equation that fits the data. The NLLS is based upon the 

differences between the independent values of collected experimental data and the 

expected values as provided by the theoretical result. 

For convenience, let 
0/iθ θ θ= , then from the theory at each position xi, 

 

( )0 2i iDI Bxθ ∗=                                                     (7)                                                                     

   

where is a constant to be determined so as to fit that experimental data. 

 

For simplicity, let                                                                                                                                                                                      (8) 
 

In this case, the residual for each data point is 

                                                                                                                   (9) 

 

Note that the dimensionless temperature iθ , and the dimensionless position 
ix
∗ (or the 

modified Bessel function at a specific position,
iI ) are the input data. Then the sum of the 

residuals squared is                                                                                                                           (10) 

      The value of h that would give the least value of residuals squared sum S is found by 
writing a MATLAB program using the Levenberg–Marquardt algorithm. 
                                                                                                                          
Refer to Appendix A at the end for MATLAB API (application programmer’s interface) on 

the Levenberg–Marquardt algorithm.                       
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4 EXPERIMENTAL SETUP 
 

The configuration and schematic of the experimental setup (1-D triangular 

fin) is presented in Figs. 1 and 2 respectively. The sides and the bottom are all 

well insulated. This setup represents a physical approximation to the upper half 

of a symmetric, infinitely long fin. Figure 3 presents the actual experimental fin 

information. 

The temperature indicators are thermocouples embedded within the 

stainless steel fin as indicated in Figure 4. 

5 DATA ACQUISITION PROCEDURE 

 
a. Familiarize yourself completely with the experimental setup. Do NOT, 

under any circumstances, touch the stainless steel surfaces because the 

setup will be turned on before class. Figure 3 is included so that you may 

view the setup without taking it apart and subjecting yourself to harm. 

b. Confirm that the temperature profile is at steady state (not a function of 

time). Do not adjust the heater temperature setting. You should have data 

to prove that steady state exists. 

c. Take the data as per the included data sheet, including T∞. Repeat the 

data collection process to confirm the steadiness of the temperatures. 

6 DATA REDUCTION PROCEDURE 

 

a. First plot T (or θ) versus x in order to check the data for the appropriate 

shape as well as to check its one-dimensional character. Note that Tw is 

the arithmetic average of the temperature readings at the fin root. 

 
 
 
 
 
 
 



b.  If the shape of the temperature variation is appropriate, enter the data sets 

(Ti and xi) and T∞ into the MATLAB program to solve for ‘h’ using 

Levenberg–Marquardt algorithm (non-linear least squares method).   

c. Run the MATLAB program and read the convection coefficient, h.  

 
7 POINTS OF INTEREST 

 
In your technical memorandum you should include a discussion of the following: 

 
1) The physical significance of the boundary conditions listed by Equations 

 
(4) and (5). 

 
2) Explain clearly how insulation on the two sides simulates a fin which is 

infinitely long in the z direction. 

3) Why is it important for the fin to be at steady state?  

 
4) Plot the resulting model (Ti from iθ using equation (7) with h value from 

MATLAB program and calculated values of D and B using h) and the 

measured steady state temperature versus x . Discuss the accuracy of 

the model. 

5) As an appendix, consider a differential element of the length dx of the 

experimental fin and obtain the governing equation for the fin. Apply 

the boundary conditions and hence obtain Equation 6. State the 

assumptions you made in the process of obtaining Equation 6. Are they 

all justified for the experimental setup used? Explain. (refer [1]) 
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NOMENCLATURE 

 

h = surface convection coefficient for a triangular fin (W/m
2 0
C) 

 

k = thermal conductivity (W/m 
0
C) 

 
l  = one half fin thickness at the root (m) 

L = fin length (m) 

s = slant length (m) 
 

T = fin temperature (
0
C) 

 

T
W = fin root temperature (

0
C) 

T∞ = ambient temperature (
0
C)  

x = dimensional axial coordinate along fin length (m) 

x∗  = x /L, dimensionless axial coordinate 
 
y = coordinate along fin height 

z = coordinate along fin width 

A( x ) = cross-sectional area parallel to the wall and enclosed by the perimeter 
 

(i.e. 2zy=2zx /L ) 
 
p(x) = perimeter of the cross sectional area of the triangular fin (i.e. 2(z+2y) = 2z, as 

 

 

z>>2y from a thermodynamic point of view) 
 

ds = ((dx) 
2  + (dy) 2 )1/2 

 

 

θ = (T - T∞) 
 
θ0 = TW - T∞ 

 

 
 
 
 
 
 
 



One Dimensional Triangular Fin Experimental Data Sheet 
 

Date: T
W
=  

Name: T∞= 
 

 
 

TC# 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Depth from Fin 
 
Bottom (in) 

 
0 

 
1.2 

 
0 

 
0.1 

 
0.5 

 
0.8 

 
0.3 

 
0 

 
1.0 

 
0.4 

 
0.6 

 
0.2 

 
1.5 

 
0 

 
0.9 

 
0.4 

Distance from root 

 
(in) 

 
0 

 
1.25 

 
2.5 

 
4.5 

 
0 

 
1.25 

 
2.5 

 
3.75 

 
0 

 
1.25 

 
2.5 

 
3.75 

 
0 

 
1.25 

 
2.5 

 
3.75 

 

 
 

Temperature (F) 

 
TC# 

time 

 

1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9 
 

10 
 

11 
 

12 
 

13 
 

14 
 

15 
 

16 
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protective cover box 

(heater inside) 

heater on back 

surface 

control panel used to 

turn on the experiment 

thermocouple selector 

switch allows from 

only one thermocouple 

to be displayed 

temperature 

display device 

cable between selector 

device and display device 



APPENDIX A 

MATLAB API (application programmer’s interface) for the Levenberg–Marquardt 

algorithm to solve non-linear least squares problems. 

Example: Rosenbrock function - in mathematical optimization, the Rosenbrock function is 

a non-convex function used as a test problem for optimization algorithms. The global 

minimum is inside a long, narrow, parabolic shaped flat valley. To find the valley is trivial, 

however to converge to the global minimum is difficult. The Rosenbrock function is 

defined as 

2 2 2( , ) (1 ) 100( )f x y x y x= − + −  

To test if Levenberg–Marquardt algorithm is able to find the global minimum (1,1):  

create a new file in MATLAB with the following commands (make sure the new 

MATLAB file and LMFsolve.m, Levenberg–Marquardt algorithm are in the same working 

directory). In this case m=[x;y], m(1)=x and m(2)=y. 

 

rosenbrock= @(m) [1-m(1); 10*(m(2)-m(1)^2)]; 

[m,residuals_squares_sum,iterations]=LMFsolve(rosenbrock,[-1.2,3],'Display',1,'MaxIter',15000) 

 

“1-m(1)” is the first function and “10*(m(2)-m(1)^2)” is the second function 

with Levenberg–Marquardt algorithm we are trying to find the minimum of the squares-

sum of these two functions. 

[-1.2,3] is the initial guess value for m 

“'Display',1,'” is for displaying iteration information after every iteration 

“'MaxIter',15000” is to set the maximum number of iterations to 15000 

Running the program will return “m = [1; 1]” i.e, m(1) = x = 1 and m(2) = y = 1 (in 

approximately 4000 iterations) which is the global minimum for the Rosenbrock function. 

Fin Experiment: Develop a new MATLAB program for this experiment with the help of 

the example as shown above.  

Hint: The important commands are- 

residuals= @(h) [ρa;ρb;ρc;ρd;ρe]; 

[h,residuals_squares_sum,iterations]=LMFsolve(residuals,[100],'Display',1,'MaxIter',15000) 

where ρ is the error (equation 9) at different x values as a function of h  

“100” is the initial guess value for h 
 


